-
Notifications
You must be signed in to change notification settings - Fork 3
/
visualize_dataset.py
593 lines (498 loc) · 26.5 KB
/
visualize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""The standard way to train a model. After training, also computes validation
and test error.
The user must provide a model (with ``--model``) and a task (with ``--task`` or
``--pytorch-teacher-task``).
Examples
--------
.. code-block:: shell
python -m parlai.scripts.train -m ir_baseline -t dialog_babi:Task:1 -mf /tmp/model
python -m parlai.scripts.train -m seq2seq -t babi:Task10k:1 -mf '/tmp/model' -bs 32 -lr 0.5 -hs 128
python -m parlai.scripts.train -m drqa -t babi:Task10k:1 -mf /tmp/model -bs 10
""" # noqa: E501
# TODO List:
# * More logging (e.g. to files), make things prettier.
import numpy as np
from tqdm import tqdm
from math import exp
import os
os.environ['CUDA_VISIBLE_DEVICES']='0'
import signal
import json
import argparse
import pickle as pkl
from dataset import dataset,CRSdataset
from model import CrossModel
import torch.nn as nn
from torch import optim
import torch
try:
import torch.version
import torch.distributed as dist
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
from nltk.translate.bleu_score import sentence_bleu
def is_distributed():
"""
Returns True if we are in distributed mode.
"""
return TORCH_AVAILABLE and dist.is_available() and dist.is_initialized()
def setup_args():
train = argparse.ArgumentParser()
train.add_argument("-max_c_length","--max_c_length",type=int,default=256)
train.add_argument("-max_r_length","--max_r_length",type=int,default=30)
train.add_argument("-beam","--beam",type=int,default=1)
# train.add_argument("-max_r_length","--max_r_length",type=int,default=256)
train.add_argument("-batch_size","--batch_size",type=int,default=32)
train.add_argument("-max_count","--max_count",type=int,default=5)
train.add_argument("-use_cuda","--use_cuda",type=bool,default=True)
train.add_argument("-is_template","--is_template",type=bool,default=True)
train.add_argument("-infomax_pretrain","--infomax_pretrain",type=bool,default=False)
train.add_argument("-load_dict","--load_dict",type=str,default=None)
train.add_argument("-learningrate","--learningrate",type=float,default=1e-3)
train.add_argument("-optimizer","--optimizer",type=str,default='adam')
train.add_argument("-momentum","--momentum",type=float,default=0)
train.add_argument("-is_finetune","--is_finetune",type=bool,default=True)
train.add_argument("-embedding_type","--embedding_type",type=str,default='random')
train.add_argument("-save_exp_name","--save_exp_name",type=str,default='saved_model/new_model')
train.add_argument("-saved_hypo_txt","--saved_hypo_txt",type=str,default='case_file/output_hypo_latest.txt')
train.add_argument("-load_model_pth","--load_model_pth",type=str,default='saved_model/net_parameter1.pkl')
train.add_argument("-epoch","--epoch",type=int,default=0)
train.add_argument("-gpu","--gpu",type=str,default='2')
train.add_argument("-gradient_clip","--gradient_clip",type=float,default=0.1)
train.add_argument("-gen_loss_weight","--gen_loss_weight",type=float,default=5)
train.add_argument("-embedding_size","--embedding_size",type=int,default=300)
train.add_argument("-n_heads","--n_heads",type=int,default=2)
train.add_argument("-n_layers","--n_layers",type=int,default=2)
train.add_argument("-ffn_size","--ffn_size",type=int,default=300)
train.add_argument("-dropout","--dropout",type=float,default=0.1)
train.add_argument("-attention_dropout","--attention_dropout",type=float,default=0.0)
train.add_argument("-relu_dropout","--relu_dropout",type=float,default=0.1)
train.add_argument("-learn_positional_embeddings","--learn_positional_embeddings",type=bool,default=False)
train.add_argument("-embeddings_scale","--embeddings_scale",type=bool,default=True)
train.add_argument("-n_movies","--n_movies",type=int,default=6924)
train.add_argument("-n_entity","--n_entity",type=int,default=64368)
train.add_argument("-n_relation","--n_relation",type=int,default=214)
train.add_argument("-n_concept","--n_concept",type=int,default=29308)
train.add_argument("-n_con_relation","--n_con_relation",type=int,default=48)
train.add_argument("-dim","--dim",type=int,default=128)
train.add_argument("-n_hop","--n_hop",type=int,default=2)
train.add_argument("-kge_weight","--kge_weight",type=float,default=1)
train.add_argument("-l2_weight","--l2_weight",type=float,default=2.5e-6)
train.add_argument("-n_memory","--n_memory",type=float,default=32)
train.add_argument("-item_update_mode","--item_update_mode",type=str,default='0,1')
train.add_argument("-using_all_hops","--using_all_hops",type=bool,default=True)
train.add_argument("-num_bases", "--num_bases", type=int, default=8)
return train
class TrainLoop_fusion_gen():
def __init__(self, opt, is_finetune):
self.opt=opt
self.train_dataset=dataset('data/train_data.jsonl',opt)
self.dict=self.train_dataset.word2index
self.index2word={self.dict[key]:key for key in self.dict}
self.movieID2selection_label=pkl.load(open('movieID2selection_label.pkl','rb'))
self.selection_label2movieID={self.movieID2selection_label[key]:key for key in self.movieID2selection_label}
self.id2entity=pkl.load(open('data/id2entity.pkl','rb'))
self.batch_size=self.opt['batch_size']
self.epoch=self.opt['epoch']
self.use_cuda=opt['use_cuda']
if opt['load_dict']!=None:
self.load_data=True
else:
self.load_data=False
self.is_finetune=False
self.is_template = opt['is_template']
self.movie_ids = pkl.load(open("data/movie_ids.pkl", "rb"))
# Note: we cannot change the type of metrics ahead of time, so you
# should correctly initialize to floats or ints here
self.metrics_rec={"recall@1":0,"recall@10":0,"recall@50":0,"loss":0,"count":0}
self.metrics_gen={"dist1":0,"dist2":0,"dist3":0,"dist4":0,"bleu1":0,"bleu2":0,"bleu3":0,"bleu4":0,"count":0, "true_recall_movie_count":0, "res_movie_recall":0.0,"recall@1":0,"recall@10":0,"recall@50":0}
self.build_model(is_finetune=True)
if opt['load_dict'] is not None:
# load model parameters if available
print('[ Loading existing model params from {} ]'
''.format(opt['load_dict']))
states = self.model.load(opt['load_dict'])
else:
states = {}
self.init_optim(
[p for p in self.model.parameters() if p.requires_grad],
optim_states=states.get('optimizer'),
saved_optim_type=states.get('optimizer_type')
)
def build_model(self,is_finetune):
self.model = CrossModel(self.opt, self.dict, is_finetune)
if self.opt['embedding_type'] != 'random':
pass
if self.use_cuda:
self.model.cuda()
def train(self):
# self.model.load_model()
losses=[]
best_val_gen=0
best_val_rec=0
gen_stop=False
for i in range(self.epoch*3):
train_set=CRSdataset(self.train_dataset.data_process(True),self.opt['n_entity'],self.opt['n_concept'])
train_dataset_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=self.batch_size,
shuffle=False)
num=0
for context,c_lengths,response,r_length,mask_response,mask_r_length,entity,entity_vector,movie,concept_mask,dbpedia_mask,concept_vec, db_vec,rec,movies_gth,movie_nums in tqdm(train_dataset_loader):
seed_sets = []
batch_size = context.shape[0]
for b in range(batch_size):
seed_set = entity[b].nonzero().view(-1).tolist()
seed_sets.append(seed_set)
# self.model.train()
# self.zero_grad()
scores, preds, rec_scores, rec_loss, gen_loss, mask_loss, info_db_loss, info_con_loss, selection_loss, matching_pred,matching_scores=self.model(context.cuda(), response.cuda(), mask_response.cuda(), concept_mask, dbpedia_mask, seed_sets, movie, concept_vec, db_vec, entity_vector.cuda(), rec,movies_gth.cuda(),movie_nums, test=False)
gen_loss = self.opt['gen_loss_weight'] * gen_loss
joint_loss= gen_loss + selection_loss
losses.append([gen_loss, selection_loss])
self.backward(joint_loss)
self.update_params()
if num%20==0:
print('gen loss is %f'%(sum([l[0] for l in losses])/len(losses)))
print('selection_loss is %f'%(sum([l[1] for l in losses])/len(losses)))
losses=[]
num+=1
output_metrics_gen = self.val(True)
if best_val_gen > output_metrics_gen["dist4"]:
pass
else:
best_val_gen = output_metrics_gen["dist4"]
self.model.save_model(model_name= self.opt['save_exp_name'] + '_best_dist4.pkl')
print("Best Dist4 generator model saved once------------------------------------------------")
print("best dist4 is :", best_val_gen)
if best_val_rec > output_metrics_gen["recall@50"] + output_metrics_gen["recall@1"]:
pass
else:
best_val_rec = output_metrics_gen["recall@50"] + output_metrics_gen["recall@1"]
self.model.save_model(model_name= self.opt['save_exp_name'] + '_best_Rec.pkl')
print("Best Recall generator model saved once------------------------------------------------")
print("best res_movie_R@1 is :", output_metrics_gen["recall@1"])
print("best res_movie_R@10 is :", output_metrics_gen["recall@10"])
print("best res_movie_R@50 is :", output_metrics_gen["recall@50"])
print('cur selection_loss is %f'%(sum([l[1] for l in losses])/len(losses)))
print('cur Epoch is : ', i)
# if i % 5 ==0: # save each 5 epoch
# model_name = self.opt['save_exp_name'] + '_' + str(i) + '.pkl'
# self.model.save_model(model_name=model_name)
# print("generator model saved once------------------------------------------------")
# print('cur selection_loss is %f'%(sum([l[1] for l in losses])/len(losses)))
_=self.val(is_test=True)
def val(self,is_test=False):
self.metrics_gen={"ppl":0,"dist1":0,"dist2":0,"dist3":0,"dist4":0,"bleu1":0,"bleu2":0,"bleu3":0,"bleu4":0,"count":0,"true_recall_movie_count":0, "res_movie_recall":0.0,"recall@1":0,"recall@10":0,"recall@50":0}
self.metrics_rec={"recall@1":0,"recall@10":0,"recall@50":0,"loss":0,"gate":0,"count":0,'gate_count':0}
# self.model.eval()
val_dataset = dataset('data/test_data.jsonl', self.opt)
val_set=CRSdataset(val_dataset.data_process(True),self.opt['n_entity'],self.opt['n_concept'])
val_dataset_loader = torch.utils.data.DataLoader(dataset=val_set,
batch_size=self.batch_size,
shuffle=False)
train_set=CRSdataset(self.train_dataset.data_process(True),self.opt['n_entity'],self.opt['n_concept'])
train_dataset_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=self.batch_size,
shuffle=False)
inference_sum=[]
golden_sum=[]
gold_movie_ids=[]
train_gold_movie_ids=[]
train_golden_sum=[]
context_sum=[]
losses=[]
recs=[]
match_movie_item = []
for context, c_lengths, response, r_length, mask_response, mask_r_length, entity, entity_vector, movie, concept_mask, dbpedia_mask, concept_vec, db_vec, rec,movies_gth,movie_nums in tqdm(val_dataset_loader):
gold_res, cur_gold_movie_ids = self.template_vector2sentence(response.cpu(), movies_gth.cpu())
# golden_sum.extend(gold_res)
gold_movie_ids.extend(cur_gold_movie_ids)
for context, c_lengths, response, r_length, mask_response, mask_r_length, entity, entity_vector, movie, concept_mask, dbpedia_mask, concept_vec, db_vec, rec,movies_gth,movie_nums in tqdm(train_dataset_loader):
train_gold_res, cur_train_gold_movie_ids = self.template_vector2sentence(response.cpu(), movies_gth.cpu())
# train_golden_sum.extend(train_gold_res)
train_gold_movie_ids.extend(cur_train_gold_movie_ids)
# train_golden_sum.extend(self.template_vector2sentence(response.cpu(), movies_gth.cpu()))
for val_movie in set(gold_movie_ids):
if val_movie not in set(train_gold_movie_ids):
match_movie_item.append(val_movie)
print('-'*50)
print(len(set(match_movie_item)))
print('match movie(in test not in train):')
print(set(match_movie_item))
print('-'*50)
def all_response_movie_recall_cal(self,decode_preds, matching_scores,labels):
# matching_scores is non-mask version [bsz, seq_len, matching_vocab]
# decode_preds [bsz, seq_len]
# labels [bsz, movie_length_with_padding]
# print('decode_preds shape', decode_preds.shape)
# print('matching_scores shape', matching_scores.shape)
# print('labels shape', labels.shape)
decode_preds = decode_preds[:, 1:] # removing the start index
labels = labels * (labels!=-1) # removing the padding token
batch_size, seq_len = decode_preds.shape[0], decode_preds.shape[1]
for cur_b in range(batch_size):
for cur_seq_len in range(seq_len):
if decode_preds[cur_b][cur_seq_len] ==6: # word id is 6
_, pred_idx = torch.topk(matching_scores[cur_b][cur_seq_len], k=100, dim=-1)
targets = labels[cur_b]
for target in targets:
self.metrics_gen["recall@1"] += int(target in pred_idx[:1].tolist())
self.metrics_gen["recall@10"] += int(target in pred_idx[:10].tolist())
self.metrics_gen["recall@50"] += int(target in pred_idx[:50].tolist())
def metrics_cal_gen(self,rec_loss,preds,responses,recs, beam=1):
def bleu_cal(sen1, tar1):
bleu1 = sentence_bleu([tar1], sen1, weights=(1, 0, 0, 0))
bleu2 = sentence_bleu([tar1], sen1, weights=(0, 1, 0, 0))
bleu3 = sentence_bleu([tar1], sen1, weights=(0, 0, 1, 0))
bleu4 = sentence_bleu([tar1], sen1, weights=(0, 0, 0, 1))
return bleu1, bleu2, bleu3, bleu4
def response_movie_recall_cal(sen1, tar1):
for word in sen1:
if '@' in word: # if is movie
if word in tar1: # if in gth
return int(1)
else:
return int(0)
return int(0)
def distinct_metrics(outs):
# outputs is a list which contains several sentences, each sentence contains several words
unigram_count = 0
bigram_count = 0
trigram_count=0
quagram_count=0
unigram_set = set()
bigram_set = set()
trigram_set=set()
quagram_set=set()
for sen in outs:
for word in sen:
unigram_count += 1
unigram_set.add(word)
for start in range(len(sen) - 1):
bg = str(sen[start]) + ' ' + str(sen[start + 1])
bigram_count += 1
bigram_set.add(bg)
for start in range(len(sen)-2):
trg=str(sen[start]) + ' ' + str(sen[start + 1]) + ' ' + str(sen[start + 2])
trigram_count+=1
trigram_set.add(trg)
for start in range(len(sen)-3):
quag=str(sen[start]) + ' ' + str(sen[start + 1]) + ' ' + str(sen[start + 2]) + ' ' + str(sen[start + 3])
quagram_count+=1
quagram_set.add(quag)
dis1 = len(unigram_set) / len(outs)#unigram_count
dis2 = len(bigram_set) / len(outs)#bigram_count
dis3 = len(trigram_set)/len(outs)#trigram_count
dis4 = len(quagram_set)/len(outs)#quagram_count
return dis1, dis2, dis3, dis4
predict_s=preds
golden_s=responses
#print(rec_loss[0])
self.metrics_gen["ppl"]+=sum([exp(ppl) for ppl in rec_loss])/len(rec_loss)
generated=[]
total_movie_gth_response_cnt = 0
have_movie_res_cnt = 0
loop = 0
total_item_response_cnt=0
total_hypo_word_count=0
# for out, tar, rec in zip(predict_s, golden_s, recs):
for out in predict_s:
tar = golden_s[loop // beam]
loop = loop+1
bleu1, bleu2, bleu3, bleu4=bleu_cal(out, tar)
generated.append(out)
self.metrics_gen['bleu1']+=bleu1
self.metrics_gen['bleu2']+=bleu2
self.metrics_gen['bleu3']+=bleu3
self.metrics_gen['bleu4']+=bleu4
self.metrics_gen['count']+=1
self.metrics_gen['true_recall_movie_count']+=response_movie_recall_cal(out, tar)
for word in out:
total_hypo_word_count +=1
if '@' in word:
total_item_response_cnt+=1
total_target_word_count = 0
for tar in golden_s:
for word in tar:
total_target_word_count +=1
if '@' in word:
total_movie_gth_response_cnt+=1
for word in tar:
if '@' in word:
have_movie_res_cnt+=1
break
dis1, dis2, dis3, dis4=distinct_metrics(generated)
self.metrics_gen['dist1']=dis1
self.metrics_gen['dist2']=dis2
self.metrics_gen['dist3']=dis3
self.metrics_gen['dist4']=dis4
self.metrics_gen['res_movie_recall'] = self.metrics_gen['true_recall_movie_count'] / have_movie_res_cnt
self.metrics_gen["recall@1"] = self.metrics_gen["recall@1"] / have_movie_res_cnt
self.metrics_gen["recall@10"] = self.metrics_gen["recall@10"] / have_movie_res_cnt
self.metrics_gen["recall@50"] = self.metrics_gen["recall@50"] / have_movie_res_cnt
print('----------'*10)
print('total_movie_gth_response_cnt: ', total_movie_gth_response_cnt)
print('total_gth_response_cnt: ', len(golden_s))
print('total_hypo_response_cnt: ', len(predict_s))
print('hypo item ratio: ', total_item_response_cnt / len(predict_s))
print('target item ratio: ', total_movie_gth_response_cnt / len(golden_s))
print('have_movie_res_cnt: ', have_movie_res_cnt)
print('----------'*10)
def vector2sentence(self,batch_sen):
sentences=[]
for sen in batch_sen.numpy().tolist():
sentence=[]
for word in sen:
if word>3:
sentence.append(self.index2word[word])
# if word==6: #if MOVIE token
# sentence.append(self.selection_label2movieID[selection_label])
elif word==3:
sentence.append('_UNK_')
sentences.append(sentence)
return sentences
def template_vector2sentence(self,batch_sen, batch_selection_pred):
sentences=[]
movie_ids=[]
all_movie_labels = []
if batch_selection_pred is not None:
batch_selection_pred = batch_selection_pred * (batch_selection_pred!=-1)
batch_selection_pred = torch.masked_select(batch_selection_pred, (batch_selection_pred!=0))
for movie in batch_selection_pred.numpy().tolist():
all_movie_labels.append(movie)
# print('all_movie_labels:', all_movie_labels)
curr_movie_token = 0
for sen in batch_sen.numpy().tolist():
sentence=[]
for word in sen:
if word>3:
if word==6: #if MOVIE token
# print('all_movie_labels[curr_movie_token]',all_movie_labels[curr_movie_token])
# print('selection_label2movieID',self.selection_label2movieID[all_movie_labels[curr_movie_token]])
# WAY1: original method
str_movie_id = '@' + str(self.selection_label2movieID[all_movie_labels[curr_movie_token]])
int_movie_id = self.selection_label2movieID[all_movie_labels[curr_movie_token]]
sentence.append(str_movie_id)
movie_ids.append(int_movie_id)
# WAY2: print out the movie name, but should comment when calculating the gen metrics
# if self.id2entity[self.selection_label2movieID[all_movie_labels[curr_movie_token]]] is not None:
# sentence.append(self.id2entity[self.selection_label2movieID[all_movie_labels[curr_movie_token]]].split('/')[-1])
# else:
# sentence.append('@' + str(self.selection_label2movieID[all_movie_labels[curr_movie_token]]))
curr_movie_token +=1
else:
sentence.append(self.index2word[word])
elif word==3:
sentence.append('_UNK_')
sentences.append(sentence)
# print('[DEBUG]sentence : ')
# print(u' '.join(sentence).encode('utf-8').strip())
assert curr_movie_token == len(all_movie_labels)
return sentences, movie_ids
@classmethod
def optim_opts(self):
"""
Fetch optimizer selection.
By default, collects everything in torch.optim, as well as importing:
- qhm / qhmadam if installed from github.com/facebookresearch/qhoptim
Override this (and probably call super()) to add your own optimizers.
"""
# first pull torch.optim in
optims = {k.lower(): v for k, v in optim.__dict__.items()
if not k.startswith('__') and k[0].isupper()}
try:
import apex.optimizers.fused_adam as fused_adam
optims['fused_adam'] = fused_adam.FusedAdam
except ImportError:
pass
try:
# https://openreview.net/pdf?id=S1fUpoR5FQ
from qhoptim.pyt import QHM, QHAdam
optims['qhm'] = QHM
optims['qhadam'] = QHAdam
except ImportError:
# no QHM installed
pass
return optims
def init_optim(self, params, optim_states=None, saved_optim_type=None):
"""
Initialize optimizer with model parameters.
:param params:
parameters from the model
:param optim_states:
optional argument providing states of optimizer to load
:param saved_optim_type:
type of optimizer being loaded, if changed will skip loading
optimizer states
"""
opt = self.opt
# set up optimizer args
lr = opt['learningrate']
kwargs = {'lr': lr}
kwargs['amsgrad'] = True
kwargs['betas'] = (0.9, 0.999)
optim_class = self.optim_opts()[opt['optimizer']]
self.optimizer = optim_class(params, **kwargs)
def backward(self, loss):
"""
Perform a backward pass. It is recommended you use this instead of
loss.backward(), for integration with distributed training and FP16
training.
"""
loss.backward()
def update_params(self):
"""
Perform step of optimization, clipping gradients and adjusting LR
schedule if needed. Gradient accumulation is also performed if agent
is called with --update-freq.
It is recommended (but not forced) that you call this in train_step.
"""
update_freq = 1
if update_freq > 1:
# we're doing gradient accumulation, so we don't only want to step
# every N updates instead
self._number_grad_accum = (self._number_grad_accum + 1) % update_freq
if self._number_grad_accum != 0:
return
if self.opt['gradient_clip'] > 0:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.opt['gradient_clip']
)
self.optimizer.step()
def zero_grad(self):
"""
Zero out optimizer.
It is recommended you call this in train_step. It automatically handles
gradient accumulation if agent is called with --update-freq.
"""
self.optimizer.zero_grad()
if __name__ == '__main__':
args=setup_args().parse_args()
# import os
# os.environ['CUDA_VISIBLE_DEVICES']=args.gpu
print('CUDA_VISIBLE_DEVICES:', os.environ['CUDA_VISIBLE_DEVICES'])
print(vars(args))
if args.is_finetune==False:
loop=TrainLoop_fusion_rec(vars(args),is_finetune=False)
# loop.model.load_model('saved_model/net_parameter1_bu.pkl')
loop.train()
else:
loop=TrainLoop_fusion_gen(vars(args),is_finetune=True)
#Tips: should at least load one of the model By Jokie
#if validation
#WAY1:
# loop.model.load_model('saved_model/matching_linear_model/generation_model_best.pkl')
#WAY2:
# loop.model.load_model('saved_model/sattn_dialog_model_best.pkl')
# loop.model.load_model('saved_model/generation_model_best.pkl')
# loop.model.load_model('saved_model/generation_model.pkl')
# loop.model.load_model('saved_model/self_attn_generation_model_22.pkl')
#WAY3: insert
# loop.model.load_model()
loop.model.load_model(args.load_model_pth)
loop.train()