-
Notifications
You must be signed in to change notification settings - Fork 0
/
Network2.py
247 lines (204 loc) · 9.73 KB
/
Network2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import theano
import theano.tensor as T
from theano.tensor import shared_randomstreams
from theano.tensor.nnet import sigmoid
from theano.tensor import tanh
from theano.tensor.nnet import conv2d
from theano.tensor.nnet import softmax
from theano.tensor.signal import pool
import numpy as np
import cPickle
import gzip
#### Constants
GPU = True
if GPU:
print "Trying to run under a GPU. If this is not desired, then modify "+\
"network3.py\nto set the GPU flag to False."
try: theano.config.device = 'gpu'
except: pass # it's already set
theano.config.floatX = 'float32'
else:
print "Running with a CPU. If this is not desired, then the modify "+\
"network3.py to set\nthe GPU flag to True."
def load_data_shared(filename="./mnist.pkl.gz"):
f = gzip.open(filename, 'rb')
training_data, validation_data, test_data = cPickle.load(f)
f.close()
def shared(data):
"""Place the data into shared variables. This allows Theano to copy
the data to the GPU, if one is available.
"""
shared_x = theano.shared(
np.asarray(data[0], dtype=theano.config.floatX), borrow=True)
shared_y = theano.shared(
np.asarray(data[1], dtype=theano.config.floatX), borrow=True)
return shared_x, T.cast(shared_y, "int32")
return [shared(training_data), shared(validation_data), shared(test_data)]
class Network(object):
def __init__(self, layers, mini_batch_size):
self.layers = layers
self.mini_batch_size = mini_batch_size
self.params = [param for layers in self.layers for param in layers.params]
self.x = T.matrix("x")
self.y = T.ivector("y")
init_layer = self.layers[0]
init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
for j in range(1, len(self.layers)):
prev_layer, layer = self.layers[j-1], self.layers[j]
layer.set_inpt(
prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
self.output = self.layers[-1].output
self.output_dropout = self.layers[-1].output_dropout
def SGD(self, training_data, epochs, mini_batch_size, eta, validataion_data,
test_data, lmbda=0.0):
training_x , training_y = training_data
validation_x, validation_y = validataion_data
test_x, test_y = test_data
#Compute mini batch sizes
num_training_batches = size(training_data)/mini_batch_size
num_validation_batches = size(validataion_data)/mini_batch_size
num_test_batches = size(test_data)/mini_batch_size
l2_normal_squared = sum([(layer.w**2).sum() for layer in self.layers])
cost = self.layers[-1].cost(self)+\
0.5*lmbda*l2_normal_squared/num_training_batches
grads = T.grad(cost,self.params)
updates = [(param, param-eta*grad)
for param, grad in zip(self.params,grads)]
i = T.lscalar()
train_mb = theano.function(
[i], cost, updates=updates,
givens={
self.x:
training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
self.y:
training_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]})
validate_mb_accuracy = theano.function(
[i], self.layers[-1].accuracy(self.y),
givens={
self.x:
validation_x[i * self.mini_batch_size: (i + 1) * self.mini_batch_size],
self.y:
validation_y[i * self.mini_batch_size: (i + 1) * self.mini_batch_size]
})
test_mb_accuracy = theano.function(
[i], self.layers[-1].accuracy(self.y),
givens={
self.x:
test_x[i * self.mini_batch_size: (i + 1) * self.mini_batch_size],
self.y:
test_y[i * self.mini_batch_size: (i + 1) * self.mini_batch_size]
})
self.test_mb_predictions = theano.function(
[i], self.layers[-1].y_out,
givens={
self.x:
test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
})
best_validation_accuracy = 0.0
for epoch in xrange(epochs):
for minibatch_index in xrange(num_training_batches):
iteration = num_training_batches*epoch + minibatch_index
if iteration % 1000 == 0:
print ("Training mini-batch number {0}".format(iteration))
cost_ij = train_mb(minibatch_index)
if(iteration+1) % num_training_batches == 0:
validation_accuracy = np.mean(
[validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
print("Epoch {0}: validataion accuracy {1:.2}".format(epoch, validation_accuracy))
if validation_accuracy > best_validation_accuracy:
print "This is the best validation accuracy to date"
best_validation_accuracy = validation_accuracy
best_iteration = iteration
if test_data:
test_accuracy = np.mean(
[test_mb_accuracy(j) for j in xrange(num_test_batches)])
print ('The corresponding test accuracy is {0:.2}'.format(test_accuracy))
print ("Finish training network.")
print ("Best validation accuracy of {0:.2} at {1} iteration".format(best_validation_accuracy, best_iteration))
print ("Corresponding test accuracy of {0:.2}".format(test_accuracy))
class FullyConnectedLayer(object):
def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
self.n_in = n_in
self.n_out = n_out
self.activation_fn = activation_fn
self.p_dropout = p_dropout
self.w = theano.shared(
np.asarray(np.random.normal(
loc=0.0,scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),
dtype=theano.config.floatX),
name='w', borrow=True)
self.b = theano.shared(
np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),
dtype=theano.config.floatX),
name='b', borrow=True)
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = self.activation_fn(
(1 - self.p_dropout) * T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = self.activation_fn(
T.dot(self.inpt_dropout, self.w) + self.b)
def accuracy(self, y):
"Return the accuracy for the mini-batch."
return T.mean(T.eq(y, self.y_out))
class SoftmaxLayer(object):
def __init__(self, n_in, n_out, p_dropout=0.0):
self.n_in = n_in
self.n_out = n_out
self.p_dropout = p_dropout
# Initialize weights and biases
self.w = theano.shared(
np.zeros((n_in, n_out), dtype=theano.config.floatX),
name='w', borrow=True)
self.b = theano.shared(
np.zeros((n_out,), dtype=theano.config.floatX),
name='b', borrow=True)
self.params = [self.w, self.b]
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape((mini_batch_size, self.n_in))
self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
self.y_out = T.argmax(self.output, axis=1)
self.inpt_dropout = dropout_layer(
inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b)
def cost(self, net):
"Return the log-likelihood cost."
return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y])
def accuracy(self, y):
"Return the accuracy for the mini-batch."
return T.mean(T.eq(y, self.y_out))
class ConvPoolLayer(object):
def __init__(self, filter_shape, input_shape,
poolsize=(2, 2),activation_fn=sigmoid):
self.filter_shape = filter_shape
self.input_shape = input_shape
self.poolsize = poolsize
self.activation_fn = activation_fn
n_out = (filter_shape[0]*np.prod(filter_shape[2:]/np.prod(poolsize)))
self.w = theano.shared(np.asarray(
np.random.normal(loc=0,scale=np.sqrt(1.0/n_out),
size=filter_shape),dtype=theano.config.floatX),borrow=True)
self.b = theano.shared(np.asarray(
np.random.normal(loc=0, scale=1.0, size=(filter_shape[0],)),dtype=theano.config.floatX),
borrow=True)
self.params=[self.w, self.b]
def set_inpt(self,inpt, inpt_dropout, mini_batch_size):
self.inpt = inpt.reshape(self.input_shape)
conv_out = conv2d(
input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
input_shape=self.input_shape)
pooled_out = pool.pool_2d(
input=conv_out, ws = self.poolsize, ignore_border=True)
self.output = self.activation_fn(pooled_out + self.b.dimshuffle('x',0,'x','x'))
self.output_dropout = self.output
def size(data):
"Return the size of the dataset `data`."
return data[0].get_value(borrow=True).shape[0]
def dropout_layer(layer, p_dropout):
srng = shared_randomstreams.RandomStreams(
np.random.RandomState(0).randint(999999))
mask = srng.binomial(n=1, p=1-p_dropout, size=layer.shape)
return layer*T.cast(mask, theano.config.floatX)