forked from tsipkens/bidias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_dmas.m
134 lines (95 loc) · 2.83 KB
/
main_dmas.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
% MAIN_DMAS Script for doing tandem DMA inversion.
% This case is for a HTDMA setup also showing growth factors.
%
% Author: Timothy Sipkens, 2022-06-28
clear;
clc;
close all;
%-- Load colour schemes --------------------------------------------------%
addpath cmap;
cm = inferno;
cm = cm(40:end,:);
cm_b = cm;
cm = viridis;
%%
%== (1) ==================================================================%
% Phantom and reconstruction grid.
% High resolution version of the distribution to be projected to coarse
% grid to generate x.
span_x = [...
14, 500; ... % range of mobilities 2
14, 500]; % range of mobilities 1
%== Generate x vector on coarser grid ====================================%
% This will be used later to gauge accuracy of reconstructions
n_x = [20,32]; % number of elements per dimension in x
% [20,32]; % used for plotting projections of basis functions
% [40,64]; % used in evaluating previous versions of regularization
grid_x = Grid(span_x,...
n_x,'logarithmic');
Gp = corr2cov(log10([1.4,1.8]), [1,0.9;0.9,1]);
phantom = Phantom('standard', grid_x, ...
log10([180, 100]), Gp);
figure(1);
phantom.plot;
colormap(viridis);
hold on;
plot(span_x(1,:), span_x(1,:), 'w');
hold off;
%%
%== (2) ==================================================================%
% Compute kernel.
n_b = [110,115]; %[12,50]; %[17,35]; % size of the data
span_b = grid_x.span;
grid_b = Grid(span_b,...
n_b,'logarithmic'); % grid for data
prop_dma = kernel.prop_dma
% Generate A matrix based on grid for x and b.
A = kernel.gen_dmas_grid(grid_b, grid_x, prop_dma, prop_dma);
A2 = kernel.gen_dmas_grid(grid_b, grid_x, prop_dma, prop_dma, 0);
idx = round(2 * grid_b.Ne / 3);
grid_b.elements(idx,:)
figure(2);
grid_x.plot2d(grid_x.reshape(A(idx, :)));
colormap(haline);
% Not reneutralized.
figure(3);
grid_x.plot2d(grid_x.reshape(A2(idx, :)));
colormap(haline);
%%
%== (3) ==================================================================%
% Generate data.
x0 = phantom.x;
b0 = A * x0;
Ntot = 1e5;
[b,Lb] = tools.get_noise(b0,Ntot);
figure(4);
grid_b.plot2d_marg(b);
colormap(matter);
hold on;
plot(span_x(1,:), span_x(1,:), 'w');
hold off;
%%
%== (4) ==================================================================%
% Invert.
%-- Tikhonov (1st order) -------------------------------------------------%
disp('Running Tikhonov (1st) ...');
lambda_tk1 = 1.1053;
x_tk1 = invert.tikhonov(...
Lb*A, Lb*b, lambda_tk1, 1, n_x(1));
tools.textdone();
disp(' ');
eps.tk1_0 = norm(x0 - x_tk1);
figure(5);
grid_x.plot2d_marg(x_tk1);
colormap(viridis);
hold on;
plot(span_x(1,:), span_x(1,:), 'w');
hold off;
%%
%== (5) =======================%
% Post-process.
% Convert to growth factor as a function of mobility.
[y, grid_y] = tools.mrbc2frac(x0, grid_x, [0.7, 5], 50);
figure(6);
grid_y.plot2d_marg(y);
colormap(tempo);