-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathstripack.html
479 lines (434 loc) · 13.9 KB
/
stripack.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
<html>
<head>
<title>
STRIPACK - Delaunay Triangulation on a Sphere
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
STRIPACK <br> Delaunay Triangulation on a Sphere
</h1>
<hr>
<p>
<b>STRIPACK</b>
is a FORTRAN90 library which
carries out some computational geometry tasks on the unit sphere in 3D,
by Robert Renka.
</p>
<p>
<b>STRIPACK</b> can compute the Delaunay triangulation or the
Voronoi diagram of a set of points on the unit sphere.
</p>
<p>
<b>STRIPACK</b> can make a PostScript plot
of the Delaunay triangulation or the Voronoi diagram from a given
point of view.
</p>
<p>
<b>STRIPACK</b> is a generalization of Robert Renka's code
<a href = "../../f_src/tripack/tripack.html">TRIPACK</a>, which computes
Delaunay triangulations and Voronoi diagrams for a set of points
in the plane.
</p>
<p>
<b>STRIPACK</b> is a FORTRAN90 "translation" of the original
FORTRAN77 code written by Robert Renka and published in the
ACM Transactions on Mathematical Software.
</p>
<p>
<b>STRIPACK</b> is ACM TOMS Algorithm 772. The text of the
original FORTRAN77 version is available online
through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html</a>.
</p>
<p>
According to Steven Fortune, it is possible to compute the Delaunay triangulation
of points on a sphere by computing their convex hull. If the sphere is the unit
sphere at the origin, the facet normals are the Voronoi vertices.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/delaunay_lmap_2d/delaunay_lmap_2d.html">
DELAUNAY_LMAP_2D</a>,
a FORTRAN90 program which
can compute the Delaunay triangulation
of points in
the plane subject to a linear mapping.
</p>
<p>
<a href = "../../f_src/geometry/geometry.html">
GEOMETRY</a>,
a FORTRAN90 library which
computes various geometric quantities, including grids on spheres.
</p>
<p>
<a href = "../../f_src/geompack/geompack.html">
GEOMPACK</a>,
a FORTRAN90 library which
includes Delaunay triangulation routines, by Barry Joe.
</p>
<p>
<a href = "../../f_src/sphere_cvt/sphere_cvt.html">
SPHERE_CVT</a>,
a FORTRAN90 library which
creates a mesh of well-separated points on a unit sphere using Centroidal Voronoi
Tessellations.
</p>
<p>
<a href = "../../f_src/sphere_delaunay/sphere_delaunay.html">
SPHERE_DELAUNAY</a>,
a FORTRAN90 program which
computes the Delaunay triangulation of points on a sphere.
</p>
<p>
<a href = "../../f_src/sphere_design_rule/sphere_design_rule.html">
SPHERE_DESIGN_RULE</a>,
a FORTRAN90 library which
returns point sets on the surface of the unit sphere, known as "designs",
which can be useful for estimating integrals on the surface, among other uses.
</p>
<p>
<a href = "../../f_src/sphere_quad/sphere_quad.html">
SPHERE_QUAD</a>,
a FORTRAN90 library which
estimates the integral of a function defined on the sphere.
</p>
<p>
<a href = "../../f_src/sphere_stereograph/sphere_stereograph.html">
SPHERE_STEREOGRAPH</a>,
a FORTRAN90 library which
computes the stereographic mapping between points on the unit sphere
and points on the plane Z = 1; a generalized mapping is also available.
</p>
<p>
<a href = "../../f_src/sphere_voronoi/sphere_voronoi.html">
SPHERE_VORONOI</a>,
a FORTRAN90 program which
computes and plots the Voronoi diagram of points on the unit sphere.
</p>
<p>
<a href = "../../cpp_src/sphere_voronoi_display_opengl/sphere_voronoi_display_opengl.html">
SPHERE_VORONOI_DISPLAY_OPENGL</a>,
a C++ program which
displays a sphere and randomly selected generator points, and then
gradually colors in points in the sphere that are closest to each generator.
</p>
<p>
<a href = "../../f_src/stripack_interactive/stripack_interactive.html">
STRIPACK_INTERACTIVE</a>,
a FORTRAN90 program which
reads an XYZ file of 3D points on
the unit sphere, computes the Delaunay triangulation, and writes it
to a file.
</p>
<p>
<a href = "../../f_src/table_delaunay/table_delaunay.html">
TABLE_DELAUNAY</a>,
a FORTRAN90 program which
reads a file of point coordinates in the TABLE format and writes out
the Delaunay triangulation.
</p>
<p>
<a href = "../../f77_src/toms772/toms772.html">
TOMS772</a>,
a FORTRAN77 library which
is the original text of the STRIPACK program.
</p>
<p>
<a href = "../../f_src/triangulation_plot/triangulation_plot.html">
TRIANGULATION_PLOT</a>,
a FORTRAN90 program which
may be used to make a PostScript image of
a triangulation of points.
</p>
<p>
<a href = "../../f_src/tripack/tripack.html">
TRIPACK</a>,
a FORTRAN90 library which
computes the Delaunay triangulation of points in the plane.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Robert Renka
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Franz Aurenhammer,<br>
Voronoi diagrams -
a study of a fundamental geometric data structure,<br>
ACM Computing Surveys,<br>
Volume 23, pages 345-405, September 1991.
</li>
<li>
Thomas Ericson, Victor Zinoviev,<br>
Codes on Euclidean Spheres,<br>
Elsevier, 2001,<br>
ISBN: 0444503293,<br>
LC: QA166.7E75
</li>
<li>
Gerald Folland,<br>
How to Integrate a Polynomial Over a Sphere,<br>
American Mathematical Monthly,<br>
Volume 108, Number 5, May 2001, pages 446-448.
</li>
<li>
Jacob Goodman, Joseph ORourke, editors,<br>
Handbook of Discrete and Computational Geometry,<br>
Second Edition,<br>
CRC/Chapman and Hall, 2004,<br>
ISBN: 1-58488-301-4,<br>
LC: QA167.H36.
</li>
<li>
AD McLaren,<br>
Optimal Numerical Integration on a Sphere,<br>
Mathematics of Computation,<br>
Volume 17, Number 84, October 1963, pages 361-383.
</li>
<li>
Robert Renka,<br>
Algorithm 772: <br>
STRIPACK:
Delaunay Triangulation and Voronoi Diagram on the Surface
of a Sphere,<br>
ACM Transactions on Mathematical Software,<br>
Volume 23, Number 3, September 1997, pages 416-434.
</li>
<li>
Edward Saff, Arno Kuijlaars,<br>
Distributing Many Points on a Sphere,<br>
The Mathematical Intelligencer,<br>
Volume 19, Number 1, 1997, pages 5-11.
</li>
<li>
Brian Wichmann, David Hill,<br>
An Efficient and Portable Pseudo-random Number Generator,<br>
Applied Statistics,<br>
Volume 31, Number 2, 1982, pages 188-190.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "stripack.f90">stripack.f90</a>, the source code.
</li>
<li>
<a href = "stripack.sh">stripack.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>STRIPACK_PRB</b> is a sample problem which tests or demonstrates
many of the functions in STRIPACK.
<ul>
<li>
<a href = "stripack_prb.f90">stripack_prb.f90</a>,
the source code.
</li>
<li>
<a href = "stripack_prb.sh">stripack_prb.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "stripack_prb_output.txt">stripack_prb_output.txt</a>,
the output file.
</li>
<li>
<a href = "stripack_prb_del.png">stripack_prb_del.png</a>,
a PNG image of the Delaunay triangulation.
</li>
<li>
<a href = "stripack_prb_vor.png">stripack_prb_vor.png</a>,
a PNG image of the Voronoi diagram.
</li>
</ul>
</p>
<p>
<b>STRIPACK_PRB2</b> is a program which examines the creation
of a Voronoi diagram for a given set of data:
<ul>
<li>
<a href = "stripack_prb2.f90">stripack_prb2.f90</a>,
the source code.
</li>
<li>
<a href = "stripack_prb2.sh">stripack_prb2.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "stripack_prb2_output.txt">stripack_prb2_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>STRIPACK_PRB3</b> is a program which examines the creation
of a Delaunay triangulation for a given set of data:
<ul>
<li>
<a href = "stripack_prb3.f90">stripack_prb3.f90</a>,
the source code.
</li>
<li>
<a href = "stripack_prb3.sh">stripack_prb3.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "stripack_prb3_output.txt">stripack_prb3_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ADDNOD</b> adds a node to a triangulation.
</li>
<li>
<b>ARC_COSINE</b> computes the arc cosine function, with argument truncation.
</li>
<li>
<b>AREAS</b> computes the area of a spherical triangle on the unit sphere.
</li>
<li>
<b>BDYADD</b> adds a boundary node to a triangulation.
</li>
<li>
<b>BNODES</b> returns the boundary nodes of a triangulation.
</li>
<li>
<b>CIRCUM</b> returns the circumcenter of a spherical triangle.
</li>
<li>
<b>COVSPH</b> connects an exterior node to boundary nodes, covering the sphere.
</li>
<li>
<b>CRLIST</b> returns triangle circumcenters and other information.
</li>
<li>
<b>DELARC</b> deletes a boundary arc from a triangulation.
</li>
<li>
<b>DELNB</b> deletes a neighbor from the adjacency list.
</li>
<li>
<b>DELNOD</b> deletes a node from a triangulation.
</li>
<li>
<b>EDGE</b> swaps arcs to force two nodes to be adjacent.
</li>
<li>
<b>GETNP</b> gets the next nearest node to a given node.
</li>
<li>
<b>INSERT</b> inserts K as a neighbor of N1.
</li>
<li>
<b>INSIDE</b> determines if a point is inside a polygonal region.
</li>
<li>
<b>INTADD</b> adds an interior node to a triangulation.
</li>
<li>
<b>INTSRC</b> finds the intersection of two great circles.
</li>
<li>
<b>JRAND</b> returns a random integer between 1 and N.
</li>
<li>
<b>LEFT</b> determines whether a node is to the left of a plane through the origin.
</li>
<li>
<b>LSTPTR</b> returns the index of NB in the adjacency list.
</li>
<li>
<b>NBCNT</b> returns the number of neighbors of a node.
</li>
<li>
<b>NEARND</b> returns the nearest node to a given point.
</li>
<li>
<b>OPTIM</b> optimizes the quadrilateral portion of a triangulation.
</li>
<li>
<b>R83VEC_NORMALIZE</b> normalizes each R83 in an R83VEC to have unit norm.
</li>
<li>
<b>SCOORD</b> converts from Cartesian to spherical coordinates.
</li>
<li>
<b>STORE</b> forces its argument to be stored.
</li>
<li>
<b>SWAP</b> replaces the diagonal arc of a quadrilateral with the other diagonal.
</li>
<li>
<b>SWPTST</b> decides whether to replace a diagonal arc by the other.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TRANS</b> transforms spherical coordinates to Cartesian coordinates.
</li>
<li>
<b>TRFIND</b> locates a point relative to a triangulation.
</li>
<li>
<b>TRLIST</b> converts a triangulation data structure to a triangle list.
</li>
<li>
<b>TRLPRT</b> prints a triangle list.
</li>
<li>
<b>TRMESH</b> creates a Delaunay triangulation on the unit sphere.
</li>
<li>
<b>TRPLOT</b> makes a PostScript image of a triangulation on a unit sphere.
</li>
<li>
<b>TRPRNT</b> prints the triangulation adjacency lists.
</li>
<li>
<b>VORONOI_POLY_COUNT</b> counts the polygons of each size in the Voronoi diagram.
</li>
<li>
<b>VRPLOT</b> makes a PostScript image of a Voronoi diagram on the unit sphere.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 30 April 2010
</i>
<!-- John Burkardt -->
</body>
</html>