-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathsphere_stereograph.html
321 lines (275 loc) · 9.33 KB
/
sphere_stereograph.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
<html>
<head>
<title>
SPHERE_STEREOGRAPH - Stereographic Mapping Between Sphere and Plane
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SPHERE_STEREOGRAPH <br>
Stereographic Mapping Between Sphere and Plane
</h1>
<hr>
<p>
<b>SPHERE_STEREOGRAPH</b>
is a FORTRAN90 program which
implements the standard stereographic mapping between the unit sphere and
the plane Z=1, as well as a generalization of this mapping.
</p>
<p>
The stereographic projection preserves angles, and is a conformal mapping.
This implies, for instance, that the Delaunay triangulation of a sphere
maps to a corresponding Delaunay triangulation of the plane.
</p>
<p>
Circles on the sphere that do not pass through the focus will be
projected to circles on the plane. Circles on the sphere that do pass
through the focus will be projected to straight lines on the plane.
</p>
<h3 align = "center">
The Standard Projection
</h3>
<p>
We start with a sphere of radius 1 and center <b>C</b> = (0,0,0).
</p>
<p>
A plane is chosen, tangent to the sphere, at a point of tangency
<b>T</b> which we take to be the "north pole", <b>T</b> = (0,0,1).
We use a focus point <b>F</b>, which we take to be the "south pole",
(0,0,-1)
</p>
<p>
For any point <b>P</b> on the sphere, the stereographic projection <b>Q</b>
of the point is defined by drawing the line from <b>F</b> through <b>P</b>,
and computing <b>Q</b> as the intersection of this line with the plane.
</p>
<p>
For any point <b>Q</b> on the plane, the stereographic inverse projection
<b>P</b> of the point is defined by drawing the line from <b>F</b>
through <b>Q</b>, and
computing <b>P</b> as the intersection of this line with the sphere.
</p>
<p>
The function <b>sphere_stereograph</b> carries out the standard projection,
and <b>sphere_stereograph_inverse</b> does the inverse.
</p>
<h3 align = "center">
Projection with arbitrary center and focus
</h3>
<p>
One way to generalize the projection is to allow the center <b>C</b> and
focus point <b>F</b> to be arbitrary. If we assume the point of tangency
is antipodal to <b>F</b> then <b>T</b> = 2*<b>C</b>-<b>F</b>. Once these
points are defined, the stereographic projection relative to <b>F</b>,
<b>C</b>, and <b>T</b> can be set up in the same way as before.
</p>
<p>
The function <b>sphere_stereograph2</b> carries out the generalized
projection, and <b>sphere_stereograph2_inverse</b> does the inverse.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SPHERE_STEREOGRAPH</b> is available in
<a href = "../../cpp_src/sphere_stereograph/sphere_stereograph.html">a C++ version</a> and
<a href = "../../f_src/sphere_stereograph/sphere_stereograph.html">a FORTRAN90 version</a> and
<a href = "../../m_src/sphere_stereograph/sphere_stereograph.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/geometry/geometry.html">
GEOMETRY</a>,
a FORTRAN90 library which
performs geometric calculations in 2, 3 and M dimensional space.
</p>
<p>
<a href = "../../f_src/sphere_cvt/sphere_cvt.html">
SPHERE_CVT</a>,
a FORTRAN90 library which
creates a mesh of well-separated points on a unit sphere using
a Centroidal Voronoi Tessellation (CVT).
</p>
<p>
<a href = "../../f_src/sphere_delaunay/sphere_delaunay.html">
SPHERE_DELAUNAY</a>,
a FORTRAN90 program which
computes and plots the Delaunay triangulation of points on the unit sphere.
</p>
<p>
<a href = "../../f_src/sphere_design_rule/sphere_design_rule.html">
SPHERE_DESIGN_RULE</a>,
a FORTRAN90 library which
returns point sets on the surface of the unit sphere, known as designs,
which can be useful for estimating integrals on the surface.
</p>
<p>
<a href = "../../f_src/sphere_grid/sphere_grid.html">
SPHERE_GRID</a>,
a FORTRAN90 library which
provides a number of ways of generating grids of points, or of
points and lines, or of points and lines and faces, over the unit sphere.
</p>
<p>
<a href = "../../f_src/sphere_lebedev_rule/sphere_lebedev_rule.html">
SPHERE_LEBEDEV_RULE</a>,
a FORTRAN90 library which
computes Lebedev quadrature rules for the unit sphere;
</p>
<p>
<a href = "../../m_src/sphere_stereograph_display/sphere_stereograph_display.html">
SPHERE_STEREOGRAPH_DISPLAY</a>,
a MATLAB library which
computes and displays the results of several stereographic projections
between a sphere and a plane.
</p>
<p>
<a href = "../../f_src/sphere_voronoi/sphere_voronoi.html">
SPHERE_VORONOI</a>,
a FORTRAN90 program which
computes and plots the Voronoi diagram of points on the unit sphere.
</p>
<p>
<a href = "../../f_src/stripack/stripack.html">
STRIPACK</a>,
a FORTRAN90 library which
computes the Delaunay triangulation or Voronoi diagram of points
on a unit sphere,
by Robert Renka.
</p>
<p>
<a href = "../../f_src/stripack_interactive/stripack_interactive.html">
STRIPACK_INTERACTIVE</a>,
a FORTRAN90 program which
reads a set of points on the unit sphere, computes the Delaunay triangulation,
and writes it to a file.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
C F Marcus,<br>
The stereographic projection in vector notation,<br>
Mathematics Magazine,<br>
Volume 39, Number 2, March 1966, pages 100-102.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "sphere_stereograph.f90">sphere_stereograph.f90</a>, the source code.
</li>
<li>
<a href = "sphere_stereograph.sh">sphere_stereograph.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "sphere_stereograph_prb.f90">sphere_stereograph_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "sphere_stereograph_prb.sh">sphere_stereograph_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "sphere_stereograph_prb_output.txt">sphere_stereograph_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>PLANE_NORMAL_BASIS_3D</b> finds two perpendicular vectors in a plane in 3D.
</li>
<li>
<b>R8_UNIFORM_01</b> returns a unit pseudorandom R8.
</li>
<li>
<b>R8MAT_NORM_FRO_AFFINE</b> returns the Frobenius norm of an R8MAT difference.
</li>
<li>
<b>R8MAT_NORMAL_01</b> returns a unit pseudonormal R8MAT.
</li>
<li>
<b>R8MAT_UNIFORM_01</b> fills an R8MAT with unit pseudorandom numbers.
</li>
<li>
<b>R8VEC_ANY_NORMAL</b> returns some normal vector to V1.
</li>
<li>
<b>R8VEC_CROSS_PRODUCT_3D</b> computes the cross product of two R8VEC's in 3D.
</li>
<li>
<b>R8VEC_NORM</b> returns the L2 norm of an R8VEC.
</li>
<li>
<b>R8VEC_NORM_AFFINE</b> returns the affine norm of an R8VEC.
</li>
<li>
<b>R8VEC_NORMAL_01</b> returns a unit pseudonormal R8VEC.
</li>
<li>
<b>R8VEC_TRANSPOSE_PRINT</b> prints an R8VEC "transposed".
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>SPHERE_STEREOGRAPH</b> computes the stereographic image of points on a sphere.
</li>
<li>
<b>SPHERE_STEREOGRAPH_INVERSE</b> computes stereographic preimages of points.
</li>
<li>
<b>SPHERE_STEREOGRAPH2</b> computes the stereographic image of points on a sphere.
</li>
<li>
<b>SPHERE_STEREOGRAPH2_INVERSE</b> computes stereographic preimages of points.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>UNIFORM_ON_SPHERE01_MAP</b> maps uniform points onto the unit sphere.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 26 September 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>