-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathsandia_rules.html
916 lines (882 loc) · 29.7 KB
/
sandia_rules.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
<html>
<head>
<title>
SANDIA_RULES - Quadrature Rules of Gaussian Type
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SANDIA_RULES <br> Quadrature Rules of Gaussian Type
</h1>
<hr>
<p>
<b>SANDIA_RULES</b>
is a FORTRAN90 library which
generates a variety of quadrature rules of various orders and types.
</p>
<p>
This library is used, in turn, by several other libraries, including
<b>SPARSE_GRID_MIXED</b> and <b>SGMGA</b>. This means that a program
that calls any of those libraries must have access to a compiled
copy of <b>SANDIA_RULES</b> as well.
</p>
<p>
<table border=1>
<tr>
<th>Name</th>
<th>Usual domain</th>
<th>Weight function</th>
</tr>
<tr>
<td>Gauss-Legendre</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
<tr>
<td>Clenshaw-Curtis</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
<tr>
<td>Fejer Type 2</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
<tr>
<td>Gauss-Chebyshev 1</td>
<td>[-1,+1]</td>
<td>1/sqrt(1-x<sup>2</sup>)</td>
</tr>
<tr>
<td>Gauss-Chebyshev 2</td>
<td>[-1,+1]</td>
<td>sqrt(1-x<sup>2</sup>)</td>
</tr>
<tr>
<td>Gauss-Gegenbauer</td>
<td>[-1,+1]</td>
<td>(1-x<sup>2</sup>)<sup>alpha</sup></td>
</tr>
<tr>
<td>Gauss-Jacobi</td>
<td>[-1,+1]</td>
<td>(1-x)<sup>alpha</sup> (1+x)<sup>beta</sup></td>
</tr>
<tr>
<td>Gauss-Laguerre</td>
<td>[0,+oo)</td>
<td>e<sup>-x</sup></td>
</tr>
<tr>
<td>Generalized Gauss-Laguerre</td>
<td>[0,+oo)</td>
<td>x<sup>alpha</sup> e<sup>-x</sup></td>
</tr>
<tr>
<td>Gauss-Hermite</td>
<td>(-oo,+oo)</td>
<td>e<sup>-x*x</sup></td>
</tr>
<tr>
<td>Generalized Gauss-Hermite</td>
<td>(-oo,+oo)</td>
<td>|x|<sup>alpha</sup> e<sup>-x*x</sup></td>
</tr>
<tr>
<td>Hermite Genz-Keister</td>
<td>(-oo,+oo)</td>
<td>e<sup>-x*x</sup></td>
</tr>
<tr>
<td>Newton-Cotes-Closed</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
<tr>
<td>Newton-Cotes-Open</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
<tr>
<td>Newton-Cotes-Open-Half</td>
<td>[-1,+1]</td>
<td>1</td>
</tr>
</table>
</p>
<p>
For example, a Gauss-Gegenbauer quadrature rule is used to approximate:
<pre>
Integral ( -1 <= x <= +1 ) f(x) (1-x^2)^alpha dx
</pre>
where <b>alpha</b> is a real parameter chosen by the user.
</p>
<p>
The approximation to the integral is formed by computing a weighted sum
of function values at specific points:
<pre>
Sum ( 1 <= i <= n ) w(i) * f(x(i))
</pre>
The quantities <b>x</b> are the <i>abscissas</i> of the quadrature rule,
the values <b>w</b> are the <i>weights</i> of the quadrature rule, and the
number of terms <b>n</b> in the sum is the <i>order</i> of the quadrature rule.
</p>
<p>
As a matter of convenience, most of the quadrature rules are available
through three related functions:
<ul>
<li>
<b>name_COMPUTE</b> returns points X and weights W;
</li>
<li>
<b>name_COMPUTE_POINTS</b> returns points X;
</li>
<li>
<b>name_COMPUTE_WEIGHTS</b> returns weights W;
</li>
</ul>
In some cases, it is possible to compute points or weights separately;
in other cases, the point and weight functions actually call the
underlying function for the entire rule, and then discard the unrequested
information.
</p>
<p>
Some of these quadrature rules expect a parameter ALPHA, and perhaps also
a parameter BETA, in order to fully define the rule. Therefore, the
argument lists of these functions vary. They always include the input
quantity ORDER, but may have one or two additional inputs. In order to offer
a uniform interface, there is also a family of functions with a standard
set of input arguments, ORDER, NP, and P. Here NP is parameter counter,
and P is the parameter value vector P. Using this interface, it is possible
to call all the quadrature functions with the same argument list.
The uniform interface functions can be identified by the
suffix <b>_NP</b> that appears in their names. Generally, these functions
"unpack" the parameter vector where needed, and then call the corresponding
basic function. Of course, for many rules NP is zero and P may be a null
pointer.
<ul>
<li>
<b>name_COMPUTE_NP ( ORDER, NP, P, X, W )</b>
unpacks parameters, calls name_COMPUTE, returns points X and weights W;
</li>
<li>
<b>name_COMPUTE_POINTS_NP ( ORDER, NP, P, X )</b>
unpacks parameters, calls name_COMPUTE_POINTS, returns points X;
</li>
<li>
<b>name_COMPUTE_WEIGHTS_NP ( ORDER, NP, P, W )</b>
unpacks parameters, calls name_COMPUTE_WEIGHTS, returns weights W;
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SANDIA_RULES</b> is available in
<a href = "../../c_src/sandia_rules/sandia_rules.html">a C version</a> and
<a href = "../../cpp_src/sandia_rules/sandia_rules.html">a C++ version</a> and
<a href = "../../f_src/sandia_rules/sandia_rules.html">a FORTRAN90 version</a> and
<a href = "../../m_src/sandia_rules/sandia_rules.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/quadrule/quadrule.html">
QUADRULE</a>,
a FORTRAN90 library which
defines quadrature rules for 1-dimensional domains.
</p>
<p>
<a href = "../../f_src/r8lib/r8lib.html">
R8LIB</a>,
a FORTRAN90 library which
contains many utility routines, using "R8" or
"double precision real" arithmetic.
</p>
<p>
<a href = "../../f_src/sgmga/sgmga.html">
SGMGA</a>,
a FORTRAN90 library which
creates sparse grids based on a mixture of 1D quadrature rules,
allowing anisotropic weights for each dimension.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Milton Abramowitz, Irene Stegun,<br>
Handbook of Mathematical Functions,<br>
National Bureau of Standards, 1964,<br>
ISBN: 0-486-61272-4,<br>
LC: QA47.A34.
</li>
<li>
William Cody,<br>
An Overview of Software Development for Special Functions,<br>
in Numerical Analysis Dundee, 1975,<br>
edited by GA Watson,<br>
Lecture Notes in Mathematics 506,<br>
Springer, 1976.
</li>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
<li>
Sylvan Elhay, Jaroslav Kautsky,<br>
Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
Interpolatory Quadrature,<br>
ACM Transactions on Mathematical Software,<br>
Volume 13, Number 4, December 1987, pages 399-415.
</li>
<li>
Alan Genz, Bradley Keister,<br>
Fully symmetric interpolatory rules for multiple integrals
over infinite regions with Gaussian weight,<br>
Journal of Computational and Applied Mathematics,<br>
Volume 71, 1996, pages 299-309.
</li>
<li>
John Hart, Ward Cheney, Charles Lawson, Hans Maehly,
Charles Mesztenyi, John Rice, Henry Thatcher,
Christoph Witzgall,<br>
Computer Approximations,<br>
Wiley, 1968,<br>
LC: QA297.C64.
</li>
<li>
Knut Petras,<br>
Smolyak Cubature of Given Polynomial Degree with Few Nodes
for Increasing Dimension,<br>
Numerische Mathematik,<br>
Volume 93, Number 4, February 2003, pages 729-753.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
<li>
Shanjie Zhang, Jianming Jin,<br>
Computation of Special Functions,<br>
Wiley, 1996,<br>
ISBN: 0-471-11963-6,<br>
LC: QA351.C45
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "sandia_rules.f90">sandia_rules.f90</a>, the source code.
</li>
<li>
<a href = "sandia_rules.sh">sandia_rules.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "sandia_rules_prb.f90">sandia_rules_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "sandia_rules_prb.sh">sandia_rules_prb.sh</a>,
commands to compile, link and run the sample calling program.
</li>
<li>
<a href = "sandia_rules_prb_output.txt">sandia_rules_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>BINARY_VECTOR_NEXT</b> generates the next binary vector.
</li>
<li>
<b>CCN_COMPUTE</b> computes a nested Clenshaw Curtis quadrature rule.
</li>
<li>
<b>CCN_COMPUTE_NP</b> computes a nested Clenshaw Curtis rule.
</li>
<li>
<b>CCN_COMPUTE_POINTS:</b> compute nested Clenshaw Curtis points.
</li>
<li>
<b>CCN_COMPUTE_POINTS_NP:</b> abscissas of a nested Clenshaw Curtis rule.
</li>
<li>
<b>CCN_COMPUTE_WEIGHTS:</b> weights for nested Clenshaw Curtis rule.
</li>
<li>
<b>CCN_COMPUTE_WEIGHTS_NP</b> computes nested Clenshaw Curtis weights.
</li>
<li>
<b>CHEBYSHEV1_COMPUTE</b> computes a Chebyshev type 1 quadrature rule.
</li>
<li>
<b>CHEBYSHEV1_INTEGRAL</b> evaluates a monomial Chebyshev type 1 integral.
</li>
<li>
<b>CHEBYSHEV2_COMPUTE</b> computes a Chebyshev type 2 quadrature rule.
</li>
<li>
<b>CHEBYSHEV2_INTEGRAL</b> evaluates a monomial Chebyshev type 2 integral.
</li>
<li>
<b>CLENSHAW_CURTIS_COMPUTE</b> computes a Clenshaw Curtis quadrature rule.
</li>
<li>
<b>CLENSHAW_CURTIS_COMPUTE_POINTS:</b> abscissas of a Clenshaw Curtis rule.
</li>
<li>
<b>CLENSHAW_CURTIS_COMPUTE_POINTS_NP:</b> abscissas of a Clenshaw Curtis rule.
</li>
<li>
<b>CLENSHAW_CURTIS_COMPUTE_WEIGHTS</b> computes Clenshaw Curtis weights.
</li>
<li>
<b>CLENSHAW_CURTIS_COMPUTE_WEIGHTS_NP</b> computes Clenshaw Curtis weights.
</li>
<li>
<b>COMP_NEXT</b> computes the compositions of the integer N into K parts.
</li>
<li>
<b>DIF_TO_R8POLY</b> converts a divided difference table to a standard polynomial.
</li>
<li>
<b>DIF_VALS</b> evaluates a divided difference polynomial at a set of points.
</li>
<li>
<b>FEJER2_COMPUTE</b> computes a Fejer Type 2 quadrature rule.
</li>
<li>
<b>FEJER2_COMPUTE_POINTS</b> returns the abscissas of a Fejer type 2 rule.
</li>
<li>
<b>FEJER2_COMPUTE_POINTS_NP</b> returns the abscissas of a Fejer type 2 rule.
</li>
<li>
<b>FEJER2_COMPUTE_WEIGHTS</b> computes weights for a Fejer type 2 quadrature rule.
</li>
<li>
<b>FEJER2_COMPUTE_WEIGHTS_NP:</b> weights for a Fejer type 2 quadrature rule.
</li>
<li>
<b>GEGENBAUER_COMPUTE</b> computes a Gegenbauer quadrature rule.
</li>
<li>
<b>GEGENBAUER_INTEGRAL</b> integrates a monomial with Gegenbauer weight.
</li>
<li>
<b>GEGENBAUER_RECUR</b> finds the value and derivative of a Gegenbauer polynomial.
</li>
<li>
<b>GEGENBAUER_ROOT</b> improves an approximate root of a Gegenbauer polynomial.
</li>
<li>
<b>GEN_HERMITE_COMPUTE</b> computes a generalized Gauss-Hermite quadrature rule.
</li>
<li>
<b>GEN_HERMITE_COMPUTE_POINTS:</b> abscissas of a Generalized Hermite rule.
</li>
<li>
<b>GEN_HERMITE_COMPUTE_POINTS_NP:</b> abscissas of a Generalized Hermite rule.
</li>
<li>
<b>GEN_HERMITE_COMPUTE_WEIGHTS:</b> weights of a Generalized Hermite rule.
</li>
<li>
<b>GEN_HERMITE_COMPUTE_WEIGHTS_NP:</b> weights of a Generalized Hermite rule.
</li>
<li>
<b>GEN_HERMITE_DR_COMPUTE</b> computes a Generalized Hermite rule.
</li>
<li>
<b>GEN_HERMITE_INTEGRAL</b> evaluates a monomial Generalized Hermite integral.
</li>
<li>
<b>GEN_LAGUERRE_COMPUTE:</b> generalized Gauss-Laguerre quadrature rule.
</li>
<li>
<b>GEN_LAGUERRE_COMPUTE_POINTS:</b> points of a Generalized Laguerre rule.
</li>
<li>
<b>GEN_LAGUERRE_COMPUTE_POINTS_NP:</b> points of a Generalized Laguerre rule.
</li>
<li>
<b>GEN_LAGUERRE_COMPUTE_WEIGHTS:</b> weights of a Generalized Laguerre rule.
</li>
<li>
<b>GEN_LAGUERRE_COMPUTE_WEIGHTS_NP:</b> weights of a Generalized Laguerre rule.
</li>
<li>
<b>GEN_LAGUERRE_INTEGRAL</b> evaluates a monomial genearlized Laguerre integral.
</li>
<li>
<b>GEN_LAGUERRE_SS_COMPUTE</b> computes a Generalized Laguerre quadrature rule.
</li>
<li>
<b>GEN_LAGUERRE_SS_RECUR</b> evaluates a Generalized Laguerre polynomial.
</li>
<li>
<b>GEN_LAGUERRE_SS_ROOT</b> seeks roots of a Generalized Laguerre polynomial.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>HC_COMPUTE_WEIGHTS_FROM_POINTS:</b> Hermite-Cubic weights, user-supplied points.
</li>
<li>
<b>HCC_COMPUTE</b> computes a Hermite-Cubic-Chebyshev-Spacing quadrature rule.
</li>
<li>
<b>HCC_COMPUTE_NP</b> computes a Hermite-Cubic-Chebyshev-Spacing quadrature rule.
</li>
<li>
<b>HCC_COMPUTE_POINTS:</b> abscissas of a Hermite-Cubic-Chebyshev-Spacing rule.
</li>
<li>
<b>HCC_COMPUTE_POINTS_NP:</b> abscissas of a Hermite-Cubic-Chebyshev-Spacing rule.
</li>
<li>
<b>HCC_COMPUTE_WEIGHTS</b> computes Hermite-Cubic-Chebyshev-Spacing weights.
</li>
<li>
<b>HCC_COMPUTE_WEIGHTS_NP</b> computes Hermite-Cubic-Chebyshev-Spacing weights.
</li>
<li>
<b>HCE_COMPUTE</b> computes a Hermite-Cubic-Equal-Spacing quadrature rule.
</li>
<li>
<b>HCE_COMPUTE_NP</b> computes a Hermite-Cubic-Equal-Spacing quadrature rule.
</li>
<li>
<b>HCE_COMPUTE_POINTS:</b> abscissas of a Hermite-Cubic-Equal-Spacing rule.
</li>
<li>
<b>HCE_COMPUTE_POINTS_NP:</b> abscissas of a Hermite-Cubic-Equal-Spacing rule.
</li>
<li>
<b>HCE_COMPUTE_WEIGHTS</b> computes Hermite-Cubic-Equal-Spacing weights.
</li>
<li>
<b>HCE_COMPUTE_WEIGHTS_NP</b> computes Hermite-Cubic-Equal-Spacing weights.
</li>
<li>
<b>HDATA_TO_DIF</b> sets up a divided difference table from Hermite data.
</li>
<li>
<b>HERMITE_COMPUTE</b> computes a Gauss-Hermite quadrature rule.
</li>
<li>
<b>HERMITE_COMPUTE_POINTS</b> computes points of a Hermite quadrature rule.
</li>
<li>
<b>HERMITE_COMPUTE_POINTS_NP</b> computes points of a Hermite quadrature rule.
</li>
<li>
<b>HERMITE_COMPUTE_WEIGHTS</b> computes weights of a Hermite quadrature rule.
</li>
<li>
<b>HERMITE_COMPUTE_WEIGHTS_NP</b> computes weights of a Hermite quadrature rule.
</li>
<li>
<b>HERMITE_GENZ_KEISTER_LOOKUP</b> returns a Genz-Keister rule for Hermite problems.
</li>
<li>
<b>HERMITE_GENZ_KEISTER_LOOKUP_POINTS:</b> abscissas of a Genz-Keister Hermite rule.
</li>
<li>
<b>HERMITE_GENZ_KEISTER_LOOKUP_POINTS_NP:</b> Genz-Keister Hermite abscissas.
</li>
<li>
<b>HERMITE_GENZ_KEISTER_LOOKUP_WEIGHTS:</b> weights for Genz-Keister Hermite rule.
</li>
<li>
<b>HERMITE_GENZ_KEISTER_LOOKUP_WEIGHTS_NP</b> sets weights for a Patterson rule.
</li>
<li>
<b>HERMITE_GK18_LOOKUP_POINTS:</b> abscissas of a Hermite Genz-Keister 18 rule.
</li>
<li>
<b>HERMITE_GK22_LOOKUP_POINTS:</b> abscissas of a Genz-Keister 22 Hermite rule.
</li>
<li>
<b>HERMITE_GK24_LOOKUP_POINTS:</b> abscissas of a Genz-Keister 24 Hermite rule.
</li>
<li>
<b>HERMITE_INTEGRAL</b> evaluates a monomial Hermite integral.
</li>
<li>
<b>HERMITE_INTERPOLANT_RULE:</b> quadrature rule for a Hermite interpolant.
</li>
<li>
<b>HERMITE_LOOKUP_POINTS</b> returns the abscissas of a Hermite rule.
</li>
<li>
<b>HERMITE_LOOKUP_WEIGHTS</b> returns weights for Hermite quadrature rules.
</li>
<li>
<b>HERMITE_SS_COMPUTE</b> computes a Hermite quadrature rule.
</li>
<li>
<b>HERMITE_SS_RECUR</b> finds the value and derivative of a Hermite polynomial.
</li>
<li>
<b>HERMITE_SS_ROOT</b> improves an approximate root of a Hermite polynomial.
</li>
<li>
<b>I4_CHOOSE</b> computes the binomial coefficient C(N,K) as an I4.
</li>
<li>
<b>I4_LOG_2</b> returns the integer part of the logarithm base 2 of an I4.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT</b> prints an I4MAT, transposed.
</li>
<li>
<b>I4MAT_TRANSPOSE_PRINT_SOME</b> prints some of the transpose of an I4MAT.
</li>
<li>
<b>I4MAT_WRITE</b> writes an I4MAT file.
</li>
<li>
<b>I4VEC_MIN_MV</b> determines U(1:N) /\ V for vectors U and a single vector V.
</li>
<li>
<b>I4VEC_PRINT</b> prints an I4VEC.
</li>
<li>
<b>IMTQLX</b> diagonalizes a symmetric tridiagonal matrix.
</li>
<li>
<b>JACOBI_COMPUTE:</b> Elhay-Kautsky method for Gauss-Jacobi quadrature rule.
</li>
<li>
<b>JACOBI_COMPUTE_POINTS</b> returns the points of a Jacobi rule.
</li>
<li>
<b>JACOBI_COMPUTE_POINTS_NP</b> returns the points of a Jacobi rule.
</li>
<li>
<b>JACOBI_COMPUTE_WEIGHTS</b> returns the weights of a Jacobi rule.
</li>
<li>
<b>JACOBI_COMPUTE_WEIGHTS_NP</b> returns the weights of a Jacobi rule.
</li>
<li>
<b>JACOBI_INTEGRAL</b> evaluates the integral of a monomial with Jacobi weight.
</li>
<li>
<b>JACOBI_SS_COMPUTE</b> computes a Jacobi quadrature rule.
</li>
<li>
<b>JACOBI_SS_RECUR</b> finds the value and derivative of a Jacobi polynomial.
</li>
<li>
<b>JACOBI_SS_ROOT</b> improves an approximate root of a Jacobi polynomial.
</li>
<li>
<b>LAGUERRE_COMPUTE:</b> Laguerre quadrature rule by the Elhay-Kautsky method.
</li>
<li>
<b>LAGUERRE_COMPUTE_POINTS</b> computes points of a Laguerre quadrature rule.
</li>
<li>
<b>LAGUERRE_COMPUTE_POINTS_NP</b> computes points of a Laguerre quadrature rule.
</li>
<li>
<b>LAGUERRE_COMPUTE_WEIGHTS</b> computes weights of a Laguerre quadrature rule.
</li>
<li>
<b>LAGUERRE_COMPUTE_WEIGHTS_NP</b> computes weights of a Laguerre quadrature rule.
</li>
<li>
<b>LAGUERRE_INTEGRAL</b> evaluates a monomial Laguerre integral.
</li>
<li>
<b>LAGUERRE_LOOKUP_POINTS</b> returns the abscissas of a Laguerre rule.
</li>
<li>
<b>LAGUERRE_LOOKUP_WEIGHTS</b> returns weights for Laguerre quadrature rules.
</li>
<li>
<b>LAGUERRE_SS_COMPUTE</b> computes a Laguerre quadrature rule.
</li>
<li>
<b>LAGUERRE_SS_RECUR</b> finds the value and derivative of a Laguerre polynomial.
</li>
<li>
<b>LAGUERRE_SS_ROOT</b> improves an approximate root of a Laguerre polynomial.
</li>
<li>
<b>LEGENDRE_COMPUTE:</b> Legendre quadrature rule by the Elhay-Kautsky method.
</li>
<li>
<b>LEGENDRE_COMPUTE_POINTS</b> computes abscissas of a Legendre quadrature rule.
</li>
<li>
<b>LEGENDRE_COMPUTE_POINTS_NP</b> computes abscissas of a Legendre quadrature rule.
</li>
<li>
<b>LEGENDRE_COMPUTE_WEIGHTS</b> computes weights of a Legendre quadrature rule.
</li>
<li>
<b>LEGENDRE_COMPUTE_WEIGHTS_NP</b> computes weights of a Legendre quadrature rule.
</li>
<li>
<b>LEGENDRE_DR_COMPUTE</b> computes a Legendre quadrature rule.
</li>
<li>
<b>LEGENDRE_INTEGRAL</b> evaluates a monomial Legendre integral.
</li>
<li>
<b>LEGENDRE_ZEROS</b> computes the zeros of the Legendre polynomial of degree N.
</li>
<li>
<b>LEVEL_GROWTH_TO_ORDER:</b> convert Level and Growth to Order.
</li>
<li>
<b>LEVEL_TO_ORDER_DEFAULT:</b> default growth.
</li>
<li>
<b>LEVEL_TO_ORDER_EXPONENTIAL:</b> exponential growth.
</li>
<li>
<b>LEVEL_TO_ORDER_EXPONENTIAL_SLOW:</b> slow exponential growth.
</li>
<li>
<b>LEVEL_TO_ORDER_LINEAR:</b> linear growth.
</li>
<li>
<b>NC_COMPUTE</b> computes a Newton-Cotes quadrature rule.
</li>
<li>
<b>NCC_COMPUTE_POINTS:</b> Newton-Cotes Closed points
</li>
<li>
<b>NCC_COMPUTE_WEIGHTS:</b> Newton-Cotes Closed weights.
</li>
<li>
<b>NCO_COMPUTE_POINTS:</b> points for a Newton-Cotes Open quadrature rule.
</li>
<li>
<b>NCO_COMPUTE_WEIGHTS:</b> weights for a Newton-Cotes Open quadrature rule.
</li>
<li>
<b>NCOH_COMPUTE_POINTS:</b> points for a Newton-Cotes Open Half quadrature rule.
</li>
<li>
<b>NCOH_COMPUTE_WEIGHTS:</b> weights for a Newton-Cotes Open Half quadrature rule.
</li>
<li>
<b>PATTERSON_LOOKUP</b> returns the abscissas and weights of a Patterson rule.
</li>
<li>
<b>PATTERSON_LOOKUP_POINTS</b> returns the abscissas of a Patterson rule.
</li>
<li>
<b>PATTERSON_LOOKUP_POINTS_NP</b> returns the abscissas of a Patterson rule.
</li>
<li>
<b>PATTERSON_LOOKUP_WEIGHTS</b> sets weights for a Patterson rule.
</li>
<li>
<b>PATTERSON_LOOKUP_WEIGHTS_NP</b> sets weights for a Patterson rule.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_COUNT</b> counts the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_COUNT</b> counts the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_COUNT_INC1</b> counts the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_COUNT_INC2</b> counts the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_INDEX</b> indexes the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_INDEX_OLD</b> indexes the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_INDEX_INC1</b> indexes the tolerably unique points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_INDEX_INC2</b> indexes unique temporary points.
</li>
<li>
<b>POINT_RADIAL_TOL_UNIQUE_INDEX_INC3</b> merges index data.
</li>
<li>
<b>POINT_UNIQUE_INDEX</b> indexes unique points.
</li>
<li>
<b>PRODUCT_MIXED_WEIGHT</b> computes the weights of a mixed product rule.
</li>
<li>
<b>R8_CEILING</b> rounds an R8 "up" (towards +oo) to the next integer.
</li>
<li>
<b>R8_CHOOSE</b> computes the binomial coefficient C(N,K) as an R8.
</li>
<li>
<b>R8_EPSILON</b> returns the R8 roundoff unit.
</li>
<li>
<b>R8_FACTORIAL</b> computes the factorial function.
</li>
<li>
<b>R8_FACTORIAL2</b> computes the double factorial function.
</li>
<li>
<b>R8_FLOOR</b> rounds an R8 "down" (towards -infinity) to the next integer.
</li>
<li>
<b>R8_GAMMA</b> evaluates Gamma(X) for a real argument.
</li>
<li>
<b>R8_HUGE</b> returns a very large R8.
</li>
<li>
<b>R8_HYPER_2F1</b> evaluates the hypergeometric function F(A,B,C,X).
</li>
<li>
<b>R8_MOP</b> returns the I-th power of -1 as an R8 value.
</li>
<li>
<b>R8_PSI</b> evaluates the function Psi(X).
</li>
<li>
<b>R8COL_COMPARE</b> compares columns in an R8COL.
</li>
<li>
<b>R8COL_SORT_HEAP_A</b> ascending heapsorts an R8COL.
</li>
<li>
<b>R8COL_SORT_HEAP_INDEX_A</b> does an indexed heap ascending sort of an R8COL.
</li>
<li>
<b>R8COL_SORTED_TOL_UNDEX</b> indexes tolerably unique entries in a sorted R8COL.
</li>
<li>
<b>R8COL_SORTED_TOL_UNIQUE_COUNT:</b> tolerably unique elements in a sorted R8COL.
</li>
<li>
<b>R8COL_SORTED_UNIQUE_COUNT</b> counts unique elements in a sorted R8COL.
</li>
<li>
<b>R8COL_SWAP</b> swaps columns I and J of an R8COL.
</li>
<li>
<b>R8COL_TOL_UNDEX</b> indexes tolerably unique entries of an R8COL.
</li>
<li>
<b>R8COL_TOL_UNIQUE_COUNT</b> counts tolerably unique entries in an R8COL.
</li>
<li>
<b>R8COL_UNDEX</b> returns unique sorted indexes for an R8COL.
</li>
<li>
<b>R8COL_UNIQUE_INDEX</b> indexes the unique occurrence of values in an R8COL.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT</b> prints an R8MAT, transposed.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT_SOME</b> prints some of an R8MAT, transposed.
</li>
<li>
<b>R8MAT_WRITE</b> writes an R8MAT file.
</li>
<li>
<b>R8POLY_ANT_VAL</b> evaluates the antiderivative of a polynomial in standard form.
</li>
<li>
<b>R8VEC_CHEBYSHEV</b> creates a vector of Chebyshev spaced values.
</li>
<li>
<b>R8VEC_COMPARE</b> compares two R8VEC's.
</li>
<li>
<b>R8VEC_DIRECT_PRODUCT2</b> creates a direct product of R8VEC's.
</li>
<li>
<b>R8VEC_INDEX_SORTED_RANGE:</b> search index sorted vector for elements in a range.
</li>
<li>
<b>R8VEC_LEGENDRE</b> creates a vector of Legendre-spaced values.
</li>
<li>
<b>R8VEC_LINSPACE</b> creates a vector of linearly spaced values.
</li>
<li>
<b>R8VEC_MIN_POS</b> returns the minimum positive value of an R8VEC.
</li>
<li>
<b>R8VEC_PRINT</b> prints an R8VEC.
</li>
<li>
<b>R8VEC_SORT_HEAP_INDEX_A</b> does an indexed heap ascending sort of an R8VEC.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>SORT_HEAP_EXTERNAL</b> externally sorts a list of items into ascending order.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>VEC_COLEX_NEXT3</b> generates vectors in colex order.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 17 October 2011.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>