-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathpce_burgers.html
248 lines (211 loc) · 6.51 KB
/
pce_burgers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
<html>
<head>
<title>
PCE_BURGERS
</title>
</head>
<body bgcolor="#eeeeee" link="#cc0000" alink="#ff3300" vlink="#000055">
<h1 align = "center">
PCE_BURGERS <br> Polynomial Chaos Expansion for Burgers Equation
</h1>
<hr>
<p>
<b>PCE_BURGERS</b>
is a FORTRAN90 library which
defines and solves a version of the time-dependent viscous Burgers equation,
with uncertain viscosity, using a polynomial chaos expansion,
in terms of Hermite polynomials,
by Gianluca Iaccarino.
</p>
<p>
The time-dependent viscous Burgers equation to be solved is:
<pre>
du/dt = - d ( u*(1/2-u)) /dx + nu d2u/dx2 for -3.0 <= x <= 3.0
</pre>
with boundary conditions
<pre>
u(-3.0) = 0.0, u(+3.0) = 1.0.
</pre>
</p>
<p>
The viscosity nu is assumed to be an uncertain quantity with
normal distribution of known mean and variance.
</p>
<p>
A polynomial chaos expansion is to be used, with Hermite polynomial
basis functions h(i,x), 0 <= i <= n.
</p>
<p>
Because the first two Hermite polynomials are simply 1 and x,
we have that
<pre>
nu = nu_mean * h(0,x) + nu_variance * h(1,x).
</pre>
We replace the time derivative by an explicit Euler approximation,
so that the equation now describes the value of U(x,t+dt) in terms
of known data at time t.
</p>
<p>
Now assume that the solution U(x,t) can be approximated
by the truncated expansion:
<pre>
U(x,t) = sum ( 0 <= i <= n ) c(i,t) * h(i,x)
</pre>
In the equation, we replace U by its expansion, and then multiply
successively by each of the basis functions h(*,x) to get a set of
n+1 equations that can be used to determine the values of c(i,t+dt).
</p>
<p>
This process is repeated until the desired final time is reached.
</p>
<p>
At any time, the coefficients c(0,t) contain information definining
the expected value of u(x,t) at that time, while the higher order coefficients
can be used to deterimine higher moments.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PCE_BURGERS</b> is available in
<a href = "../../c_src/pce_burgers/pce_burgers.html">a C version</a> and
<a href = "../../cpp_src/pce_burgers/pce_burgers.html">a C++ version</a> and
<a href = "../../f77_src/pce_burgers/pce_burgers.html">a FORTRAN77 version</a> and
<a href = "../../f_src/pce_burgers/pce_burgers.html">a FORTRAN90 version</a> and
<a href = "../../m_src/pce_burgers/pce_burgers.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/hermite_polynomial/hermite_polynomial.html">
HERMITE_POLYNOMIAL</a>,
a FORTRAN90 library which
evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial,
the Hermite function, and related functions.
</p>
<p>
<a href = "../../f_src/pce_ode_hermite/pce_ode_hermite.html">
PCE_ODE_HERMITE</a>,
a FORTRAN90 program which
sets up a simple scalar ODE for exponential decay with an uncertain
decay rate, using a polynomial chaos expansion in terms of Hermite polynomials.
</p>
<p>
<a href = "../../f_src/sde/sde.html">
SDE</a>,
a FORTRAN90 library which
illustrates the properties of stochastic differential equations, and
common algorithms for their analysis,
by Desmond Higham;
</p>
<h3 align = "center">
Author:
</h3>
<p>
The original FORTRAN90 version of this program was written by Gianluca Iaccarino.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Roger Ghanem, Pol Spanos,<br>
Stochastic Finite Elements: A Spectral Approach,<br>
Revised Edition,<br>
Dover, 2003,<br>
ISBN: 0486428184,<br>
LC: TA347.F5.G56.
</li>
<li>
Dongbin Xiu,<br>
Numerical Methods for Stochastic Computations: A Spectral Method Approach,<br>
Princeton, 2010,<br>
ISBN13: 978-0-691-14212-8,<br>
LC: QA274.23.X58.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "pce_burgers.f90">pce_burgers.f90</a>, the source code.
</li>
<li>
<a href = "pce_burgers.sh">pce_burgers.sh</a>,
BASH commands to compile and load the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "pce_burgers_output.txt">pce_burgers_output.txt</a>,
the output file.
</li>
<li>
<a href = "burgers.history.txt">burgers.history.txt</a>,
the value of the solution (expansion coefficients) at selected times.
</li>
<li>
<a href = "burgers.modes.txt">burgers.modes.txt</a>,
the modes of the solution at the final time.
</li>
<li>
<a href = "burgers.moments.txt">burgers.moments.txt</a>,
the mean and variance of the coefficients at each point,
at the final time.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for PCE_BURGERS.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>HE_DOUBLE_PRODUCT_INTEGRAL:</b> integral of He(i,x)*He(j,x)*e^(-x^2/2).
</li>
<li>
<b>HE_TRIPLE_PRODUCT_INTEGRAL:</b> integral of He(i,x)*He(j,x)*He(k,x)*e^(-x^2/2).
</li>
<li>
<b>R8_FACTORIAL</b> computes the factorial of N.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last modified on 16 March 2012.
</i>
<!-- John Burkardt -->
</body>
</html>