-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathhermite.html
302 lines (263 loc) · 8.24 KB
/
hermite.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
<html>
<head>
<title>
HERMITE - Hermite polynomial interpolating function and derivative values
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
HERMITE <br> Hermite polynomial interpolating function and derivative values
</h1>
<hr>
<p>
<b>HERMITE</b>
is a FORTRAN90 library which
constructs the Hermite polynomial which interpolates function
and derivative values at given points.
</p>
<p>
In other words, the user supplies <b>n</b> sets of data,
<b>(x(i),y(i),yp(i))</b>, and the algorithm determines a polynomial <b>p(x)</b>
such that, for 1 <= <b>i</b> <= <b>n</b>
<blockquote>
p(x(i)) = y(i) <br>
p'(x(i)) = yp(i)
</blockquote>
</p>
<p>
Note that <b>p(x)</b> is a "global" polynomial, not a piecewise polynomial.
Given <b>n</b> data points, <b>p(x)</b> will be a polynomial of degree 2<b>n</b>-1.
As the value <b>n</b> increases, the increasing degree of the interpolating
polynomial makes it liable to oscillations between the data, and eventually
to severe inaccuracy even at the data points.
</p>
<p>
Generally, the interpolation problem for a large number of data points should
be handled differently, for instance by piecewise polynomials.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>HERMITE</b> is available in
<a href = "../../c_src/hermite/hermite.html">a C version</a> and
<a href = "../../cpp_src/hermite/hermite.html">a C++ version</a> and
<a href = "../../f77_src/hermite/hermite.html">a FORTRAN77 version</a> and
<a href = "../../f_src/hermite/hermite.html">a FORTRAN90 version</a> and
<a href = "../../m_src/hermite/hermite.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/bernstein/bernstein.html">
BERNSTEIN</a>,
a FORTRAN90 library which
evaluates the Bernstein polynomials,
useful for uniform approximation of functions;
</p>
<p>
<a href = "../../f_src/chebyshev/chebyshev.html">
CHEBYSHEV</a>,
a FORTRAN90 library which
computes the Chebyshev interpolant/approximant to a given function
over an interval.
</p>
<p>
<a href = "../../f_src/divdif/divdif.html">
DIVDIF</a>,
a FORTRAN90 library which
computes interpolants by divided differences.
</p>
<p>
<a href = "../../f_src/hermite_cubic/hermite_cubic.html">
HERMITE_CUBIC</a>,
a FORTRAN90 library which
can compute the value, derivatives or integral of a Hermite cubic polynomial,
or manipulate an interpolating function made up of piecewise Hermite cubic
polynomials.
</p>
<p>
<a href = "../../f_src/interp/interp.html">
INTERP</a>,
a FORTRAN90 library which
can compute interpolants to data.
</p>
<p>
<a href = "../../f_src/lagrange_interp_1d/lagrange_interp_1d.html">
LAGRANGE_INTERP_1D</a>,
a FORTRAN90 library which
defines and evaluates the Lagrange polynomial p(x)
which interpolates a set of data, so that p(x(i)) = y(i).
</p>
<p>
<a href = "../../f_src/pppack/pppack.html">
PPPACK</a>,
a FORTRAN90 library which
computes piecewise polynomial functions, including cubic splines.
</p>
<p>
<a href = "../../f_src/rbf_interp/rbf_interp.html">
RBF_INTERP</a>,
a FORTRAN90 library which
defines and evaluates radial basis interpolants to multidimensional data.
</p>
<p>
<a href = "../../f_src/spline/spline.html">
SPLINE</a>,
a FORTRAN90 library which
includes many routines to construct
and evaluate spline interpolants and approximants.
</p>
<p>
<a href = "../../f_src/test_interp/test_interp.html">
TEST_INTERP</a>,
a FORTRAN90 library which
defines a number of test problems for interpolation.
</p>
<p>
<a href = "../../f_src/toms446/toms446.html">
TOMS446</a>,
a FORTRAN90 library which
manipulates Chebyshev series for interpolation and approximation;<br>
this is a version of ACM TOMS algorithm 446,
by Roger Broucke.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Philip Davis,<br>
Interpolation and Approximation,<br>
Dover, 1975,<br>
ISBN: 0-486-62495-1,<br>
LC: QA221.D33
</li>
<li>
Carl deBoor,<br>
A Practical Guide to Splines,<br>
Springer, 2001,<br>
ISBN: 0387953663,<br>
LC: QA1.A647.v27.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "hermite.f90">hermite.f90</a>, the source code.
</li>
<li>
<a href = "hermite.sh">hermite.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "hermite_prb.f90">hermite_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "hermite_prb.sh">hermite_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "hermite_prb_output.txt">hermite_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>DIF_DERIV</b> computes the derivative of a polynomial in divided difference form.
</li>
<li>
<b>DIF_SHIFT_X</b> replaces one abscissa of a divided difference table.
</li>
<li>
<b>DIF_SHIFT_ZERO</b> shifts a divided difference table so all abscissas are zero.
</li>
<li>
<b>DIF_TO_R8POLY</b> converts a divided difference table to a standard polynomial.
</li>
<li>
<b>DIF_VALS</b> evaluates a divided difference polynomial at a set of points.
</li>
<li>
<b>HERMITE_BASIS_0</b> evaluates a zero-order Hermite interpolation basis function.
</li>
<li>
<b>HERMITE_BASIS_1</b> evaluates a first-order Hermite interpolation basis function.
</li>
<li>
<b>HERMITE_DEMO</b> computes and prints Hermite interpolant information for data.
</li>
<li>
<b>HERMITE_INTERPOLANT</b> sets up a divided difference table from Hermite data.
</li>
<li>
<b>HERMITE_INTERPOLANT_RULE:</b> quadrature rule for a Hermite interpolant.
</li>
<li>
<b>HERMITE_INTERPOLANT_VALUE</b> evaluates the Hermite interpolant polynomial.
</li>
<li>
<b>R8POLY_ANT_VAL</b> evaluates the antiderivative of a polynomial in standard form.
</li>
<li>
<b>R8POLY_DEGREE</b> returns the degree of a polynomial.
</li>
<li>
<b>R8POLY_PRINT</b> prints out a polynomial.
</li>
<li>
<b>R8VEC_CHEBYSHEV</b> creates a vector of Chebyshev spaced values.
</li>
<li>
<b>R8VEC_LINSPACE</b> creates a vector of linearly spaced values.
</li>
<li>
<b>R8VEC_PRINT</b> prints an R8VEC.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 01 November 2011.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>