-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathhammersley.html
497 lines (445 loc) · 15.2 KB
/
hammersley.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
<html>
<head>
<title>
HAMMERSLEY - The Hammersley Quasirandom Sequence
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
HAMMERSLEY <br> The Hammersley Quasirandom Sequence
</h1>
<hr>
<p>
<b>HAMMERSLEY</b>
is a FORTRAN90 library which
computes elements of a Hammersley quasirandom sequence.
</p>
<p>
<b>HAMMERSLEY</b> includes routines to make it easy to manipulate this
computation, to compute the next N entries, to compute a particular
entry, to restart the sequence at a particular point, or to compute
NDIM-dimensional versions of the sequence.
</p>
<p>
For the most straightforward use, try either
<ul>
<li>
<b>I4_TO_HAMMERSLEY</b>, for one element of a sequence;
</li>
<li>
<b>I4_TO_HAMMERSLEY_SEQUENCE</b>, for N elements of a sequence;
</li>
</ul>
Both of these routines require explicit input values for all
parameters.
</p>
<p>
For more convenience, there are two related routines with
almost no input arguments:
<ul>
<li>
<b>HAMMERSLEY</b>, for one element of a sequence;
</li>
<li>
<b>HAMMERSLEY_SEQUENCE</b>, for N elements of a sequence;
</li>
</ul>
These routines allow the user to either rely on the default
values of parameters, or to change a few of them by calling
appropriate routines.
</p>
<p>
Routines in this library select elements of a "leaped" subsequence of
the Hammersley sequence. The subsequence elements are indexed by a
quantity called STEP, which starts at 0. The STEP-th subsequence
element is simply the Hammersley sequence element with index
<pre>
SEED(1:NDIM) + STEP * LEAP(1:NDIM).
</pre>
</p>
<p>
The arguments that the user may set include:
<ul>
<li>
NDIM, the spatial dimension, <br>
default: NDIM = 1, <br>
required: 1 <= NDIM;
</li>
<li>
STEP, the subsequence index.<br>
default: STEP = 0,<br>
required: 0 <= STEP.
</li>
<li>
SEED(1:NDIM), the Hammersley sequence index corresponding
to STEP = 0.<br>
default: SEED(1:NDIM) = (0, 0, ... 0),<br>
required: 0 <= SEED(1:NDIM);
</li>
<li>
LEAP(1:NDIM), the succesive jumps in the Hammersley sequence.<br>
default: LEAP(1:NDIM) = (1, 1, ..., 1).<br>
required: 1 <= LEAP(1:NDIM).
</li>
<li>
BASE(1:NDIM), the Hammersley bases.<br>
default: BASE(1:NDIM) = (2, 3, 5, 7, 11... ),<br>
or (-N, 2, 3, 5, 7, 11,...) if <b>N</b> is known;<br>
required: 1 < BASE(I) for any van der Corput dimension I, or
BASE(I) < 0 to generate the fractional sequence J/|BASE(I)|.
</li>
</ul>
</p>
<p>
In the standard NDIM-dimensional Hammersley sequence, it is assumed
that <b>N</b>, the number of values to be generated, is known
beforehand. The first dimension of entries in the sequence
will have the form <b>J/N</b> for J from 1 to N. The remaining
dimensions are computed using the 1-dimensional
<a href = "../van_der_corput/van_der_corput.html">
van der Corput sequence</a>, using successive primes as bases.
</p>
<p>
In a generalized Hammersley sequence, each coordinate is allowed
to be a fractional or van der Corput sequence. For any fractional
sequence, the denominator is arbitrary. However, it is extremely
desirable that the values in all coordinates stay between 0 and 1.
This happens automatically for any van der Corput sequence, but
for fractional sequences, this criterion is enforced using an
appropriate <i>modulus</i> function. The consequence is that if
you specify a small "base" for a fractional sequence, your sequence
will soon wrap around and you will get repeated values.
</p>
<p>
If you drop the first dimension of the standard NDIM-dimensional
Hammersley sequence, you get the standard
<a href = "../halton/halton.html">Halton sequence</a> of dimension NDIM-1.
</p>
<p>
The standard Hammersley sequence has slightly better dispersion
properties than the standard Halton sequence. However, it suffers
from the problem that you must know, beforehand, the number of points you
are going to generate. Thus, if you have computed a Hammersley
sequence of length <b>N</b> = 100, and you want to compute a
Hammersley sequence of length 200, you must discard your current
values and start over. By contrast, you can compute 100 points of
a Halton sequence, and then 100 more, and this will be the same
as computing the first 200 points of the Halton sequence in
one calculation.
</p>
<p>
In low dimensions, the multidimensional Hammersley sequence quickly
"fills up" the space in a well-distributed pattern. However,
for higher dimensions (such as NDIM = 40) for instance, the initial
elements of the Hammersley sequence can be very poorly distributed;
it is only when N, the number of sequence elements, is large
enough relative to the spatial dimension, that the sequence is
properly behaved. Remedies for this problem were suggested
by Kocis and Whiten.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>HAMMERSLEY</b> is available in
<a href = "../../cpp_src/hammersley/hammersley.html">a C++ version</a> and
<a href = "../../f_src/hammersley/hammersley.html">a FORTRAN90 version</a> and
<a href = "../../m_src/hammersley/hammersley.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cvt/cvt.html">
CVT</a>,
a FORTRAN90 library which
computes elements of
a Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../f_src/faure/faure.html">
FAURE</a>,
a FORTRAN90 library which
computes elements of a Faure quasirandom sequence.
</p>
<p>
<a href = "../../f_src/grid/grid.html">
GRID</a>,
a FORTRAN90 library which
computes elements of a grid dataset.
</p>
<p>
<a href = "../../f_src/halton/halton.html">
HALTON</a>,
a FORTRAN90 library which
computes elements of a Halton quasirandom sequence.
</p>
<p>
<a href = "../../f_src/hammersley_dataset/hammersley_dataset.html">
HAMMERSLEY_DATASET</a>,
a FORTRAN90 program which
creates a
Hammersley sequence and write it to a file.
</p>
<p>
<a href = "../../f_src/hex_grid/hex_grid.html">
HEX_GRID</a>,
a FORTRAN90 library which
computes elements of a hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/hex_grid_angle/hex_grid_angle.html">
HEX_GRID_ANGLE</a>,
a FORTRAN90 library which
computes elements of an angled hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/ihs/ihs.html">
IHS</a>,
a FORTRAN90 library which
computes elements of an improved distributed Latin hypercube dataset.
</p>
<p>
<a href = "../../f_src/latin_center/latin_center.html">
LATIN_CENTER</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing center points.
</p>
<p>
<a href = "../../f_src/latin_edge/latin_edge.html">
LATIN_EDGE</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing edge points.
</p>
<p>
<a href = "../../f_src/latin_random/latin_random.html">
LATIN_RANDOM</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing
points at random.
</p>
<p>
<a href = "../../f_src/lattice_rule/lattice_rule.html">
LATTICE_RULE</a>,
a FORTRAN90 library which
approximates multidimensional integrals using lattice rules.
</p>
<p>
<a href = "../../f_src/lcvt/lcvt.html">
LCVT</a>,
a FORTRAN90 library which
computes a latinized Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../f_src/niederreiter2/niederreiter2.html">
NIEDERREITER2</a>,
a FORTRAN90 library which
computes elements of a Niederreiter quasirandom sequence with base 2.
</p>
<p>
<a href = "../../f_src/normal/normal.html">
NORMAL</a>,
a FORTRAN90 library which
computes elements of a
sequence of pseudorandom normally distributed values.
</p>
<p>
<a href = "../../f_src/sobol/sobol.html">
SOBOL</a>,
a FORTRAN90 library which
computes elements of a Sobol quasirandom sequence.
</p>
<p>
<a href = "../../f_src/uniform/uniform.html">
UNIFORM</a>,
a FORTRAN90 library which
computes elements of a uniform pseudorandom sequence.
</p>
<p>
<a href = "../../f_src/van_der_corput/van_der_corput.html">
VAN_DER_CORPUT</a>,
a FORTRAN90 library which
computes elements of a van der Corput quasirandom sequence.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
John Hammersley,<br>
Monte Carlo methods for solving multivariable problems,<br>
Proceedings of the New York Academy of Science,<br>
Volume 86, 1960, pages 844-874.
</li>
<li>
Ladislav Kocis, William Whiten,<br>
Computational Investigations of Low-Discrepancy Sequences,<br>
ACM Transactions on Mathematical Software,<br>
Volume 23, Number 2, 1997, pages 266-294.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "hammersley.f90">hammersley.f90</a>, the source code.
</li>
<li>
<a href = "hammersley.sh">hammersley.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "hammersley_prb.f90">hammersley_prb.f90</a>,
a sample problem.
</li>
<li>
<a href = "hammersley_prb.sh">hammersley_prb.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "hammersley_prb_output.txt">hammersley_prb_output.txt</a>,
the output file.
</li>
<li>
<a href = "../../datasets/hammersley/hammersley_04_00010.txt">
hammersley_04_00010.txt</a>,
a Hammersley datafile created by the sample problem.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ARC_COSINE</b> computes the arc cosine function, with argument truncation.
</li>
<li>
<b>ATAN4</b> computes the inverse tangent of the ratio Y / X.
</li>
<li>
<b>GET_SEED</b> returns a seed for the random number generator.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>HALHAM_LEAP_CHECK</b> checks LEAP for a Halton or Hammersley sequence.
</li>
<li>
<b>HALHAM_N_CHECK</b> checks N for a Halton or Hammersley sequence.
</li>
<li>
<b>HALHAM_DIM_NUM_CHECK</b> checks DIM_NUM for a Halton or Hammersley sequence.
</li>
<li>
<b>HALHAM_SEED_CHECK</b> checks SEED for a Halton or Hammersley sequence.
</li>
<li>
<b>HALHAM_STEP_CHECK</b> checks STEP for a Halton or Hammersley sequence.
</li>
<li>
<b>HALHAM_WRITE</b> writes a Halton or Hammersley subsequence to a file.
</li>
<li>
<b>HAMMERSLEY</b> computes the next element in a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_BASE_CHECK</b> checks BASE for a Hammersley sequence.
</li>
<li>
<b>HAMMERSLEY_BASE_GET</b> gets the base vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_BASE_SET</b> sets the base vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_LEAP_GET</b> gets the leap vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_LEAP_SET</b> sets the leap vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_MEMORY</b> holds data associated with a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_DIM_NUM_GET</b> gets the spatial dimension for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_DIM_NUM_SET</b> sets the spatial dimension for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_SEED_GET</b> gets the seed vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_SEED_SET</b> sets the seed vector for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_SEQUENCE</b> computes N elements of a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_STEP_GET</b> gets the "step" for a leaped Hammersley subsequence.
</li>
<li>
<b>HAMMERSLEY_STEP_SET</b> sets the "step" for a leaped Hammersley subsequence.
</li>
<li>
<b>I4_TO_HAMMERSLEY</b> computes one element of a leaped Hammersley subsequence.
</li>
<li>
<b>I4_TO_HAMMERSLEY_SEQUENCE</b> computes N elements of a leaped Hammersley subsequence.
</li>
<li>
<b>I4VEC_TRANSPOSE_PRINT</b> prints an I4VEC "transposed".
</li>
<li>
<b>PRIME</b> returns any of the first PRIME_MAX prime numbers.
</li>
<li>
<b>U1_TO_SPHERE_UNIT_2D</b> maps a point in the unit interval to the unit circle.
</li>
<li>
<b>U2_TO_BALL_UNIT_2D</b> maps points from the unit box to the unit ball in 2D.
</li>
<li>
<b>U2_TO_SPHERE_UNIT_3D</b> maps a point in the unit box onto the unit sphere in 3D.
</li>
<li>
<b>U3_TO_BALL_UNIT_3D</b> maps points from the unit box to the unit ball in 3D.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 31 December 2010.
</i>
<!-- John Burkardt -->
</body>
</html>