-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathdlap.html
1059 lines (991 loc) · 36.9 KB
/
dlap.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
DLAP - Sparse Linear Algebra Package
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
DLAP <br> Sparse Linear Algebra Package
</h1>
<hr>
<p>
<b>DLAP</b>
is a FORTRAN90 library which
implements a number of routines
for solving sparse linear systems,
by Anne Greenbaum and Mark Seager.
</p>
<p>
<b>DLAP</b> contains "core" routines for the iterative solution of
symmetric and non-symmetric positive definite and positive
semi-definite linear systems.
</p>
<p>
Included in this package are core routines to do
<ul>
<li>
Iterative Refinement iteration,
</li>
<li>
Preconditioned Conjugate Gradient iteration,
</li>
<li>
Preconditioned Conjugate Gradient iteration on the
Normal Equations,
</li>
<li>
Preconditioned BiConjugate Gradient iteration,
</li>
<li>
Preconditioned BiConjugate Gradient Squared iteration,
</li>
<li>
Orthomin iteration,
</li>
<li>
Generalized Minimum Residual iteration (GMRES).
</li>
</ul>
</p>
<p>
The DLAP core routines generally do not interact directly with
the sparse matrix. Instead, they require the user to supply
two routines:
<ul>
<li>
<b>MATVEC</b> (Matrix Vector Multiply)
</li>
<li>
<b>MSOLVE</b> (Preconditioning).
</li>
</ul>
This allows the core routines to be written in a way that makes them
independent of the matrix data structure. For each core routine
there are several drivers and support routines that allow the
user to utilize Diagonal Scaling and Incomplete Cholesky factorization
or Incomplete LU factorization as preconditioners with no
coding. The price for this convenience is that one must use the
a specific matrix data structure: DLAP Column or DLAP Triad
format.
</p>
<p>
This document contains the specifications for the DLAP Version
2.0 package, a Fortran package for the solution of large
sparse linear systems, Ax = b, via preconditioned iterative
methods.
</p>
<p>
Included in this package are core routines to do
<ul>
<li>
Iterative Refinement (Jacobi's method),
</li>
<li>
Conjugate Gradient,
</li>
<li>
Conjugate Gradient on the normal equations, AA'y = b,
(where x = A'y and A' denotes the transpose of A),
</li>
<li>
BiConjugate Gradient,
</li>
<li>
BiConjugate Gradient Squared,
</li>
<li>
Orthomin
</li>
<li>
Generalized Minimum Residual (GMRES) Iteration.
</li>
</ul>
</p>
<p>
These core routines do not require a fixed data structure for
storing the matrix A and the preconditioning matrix M.
The user is free to choose any
structure that facilitates efficient solution of the problem at
hand. The drawback to this approach is that the user must also
supply at least two routines (MATVEC and MSOLVE, say).
</p>
<p>
MATVEC must calculate y = A*x, given x and the user's data structure for
A. MSOLVE must solve, r = M*z, for z (*NOT* r) given r and the
user's data structure for M (or its inverse). The user should
choose M so that M*A is approximately the identity and the
solution step r = M*z is "easy" to solve.
</p>
<p>
For some of the "core"
routines (Orthomin, BiConjugate Gradient and Conjugate Gradient
on the normal equations) the user must also supply a matrix
transpose times vector routine (MTTVEC, say) and (possibly,
depending on the "core" method) a routine that solves the
transpose of the preconditioning step (MTSOLV, say).
Specifically, MTTVEC is a routine which calculates y = A'x, given
x and the user's data structure for A (A' is the transpose of A).
MTSOLV is a routine which solves the system r = M'z for z given r
and the user's data structure for M.
</p>
<p>
This process of writing the matrix vector operations can be time
consuming and error prone. To alleviate these problems we have
written drivers for the "core" methods that assume the user
supplies one of two specific data structures (DLAP Triad and DLAP
Column format), see below. Utilizing these data structures we
have augmented each "core" method with two preconditioners:
Diagonal Scaling and Incomplete Factorization. Diagonal scaling
is easy to implement, vectorizes very well and for problems that
are not too ill-conditioned reduces the number of iterations
enough to warrant its use. On the other hand, an Incomplete
factorization (Incomplete Cholesky for symmetric systems and
Incomplete LU for nonsymmetric systems) may take much longer to
calculate, but it reduces the iteration count (for most problems)
significantly. Our implementations of IC and ILU vectorize for
machines with hardware gather scatter, but the vector lengths can
be quite short if the number of nonzeros in a column is not
large.
</p>
<h2>
DLAP Triad format
</h2>
<p>
In the DLAP Triad format only the non-zeros are stored. They may
appear in any order. The user supplies three arrays of length
NELT, where NELT is the number of non-zeros in the matrix:
(IA(NELT), JA(NELT), A(NELT)). If the matrix is symmetric then
one need only store the lower triangle (including the diagonal)
and NELT would be the corresponding number of non-zeros stored.
For each non-zero the user puts the row and column index of that
matrix element in the IA and JA arrays. The value of the
non-zero matrix element is placed in the corresponding location
of the A array. This is an extremely easy data structure to
generate. On the other hand, it is not very efficient on vector
computers for the iterative solution of linear systems. Hence,
DLAP changes this input data structure to the DLAP Column format
for the iteration (but does not change it back).
</p>
<p>
Here is an example of the DLAP Triad storage format for a
nonsymmetric 5x5 Matrix. NELT=11. Recall that the entries may
appear in any order.
<pre>
|11 12 0 0 15|
|21 22 0 0 0|
| 0 0 33 0 35|
| 0 0 0 44 0|
|51 0 53 0 55|
</pre>
Here is the DLAP Triad format for the same 5x5 matrix:
<pre>
1 2 3 4 5 6 7 8 9 10 11
A: 51 12 11 33 15 53 55 22 35 44 21
IA: 5 1 1 3 1 5 5 2 3 4 2
JA: 1 2 1 3 5 3 5 2 5 4 1
</pre>
</p>
<h2>
DLAP Column format
</h2>
<p>
In the DLAP Column format the non-zeros are stored counting down
columns (except for the diagonal entry, which must appear first
in each "column") and are stored in the real array A. In other
words, for each column in the matrix first put the diagonal entry
in A. Then put in the other non-zero elements going down the
column (except the diagonal) in order. The IA array holds the
row index for each non-zero. The JA array holds the offsets into
the IA, A arrays for the beginning of each column. That is,
IA(JA(ICOL)), A(JA(ICOL)) are the first elements of the ICOL-th
column in IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) are the
last elements of the ICOL-th column. Note that we always have
JA(N+1) = NELT+1, where N is the number of columns in the matrix
and NELT is the number of non-zeros in the matrix. If the matrix
is symmetric one need only store the lower triangle (including
the diagonal) and NELT would be the corresponding number of
non-zeros stored.
</p>
<p>
Here is an example of the DLAP Column storage format for a
nonsymmetric 5x5 Matrix (in the A and IA arrays '|' denotes the
end of a column):
<pre>
|11 12 0 0 15|
|21 22 0 0 0|
| 0 0 33 0 35|
| 0 0 0 44 0|
|51 0 53 0 55|
</pre>
Here is the DLAP Column format for the 5x5 matrix:
<pre>
1 2 3 4 5 6 7 8 9 10 11
A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
JA: 1 4 6 8 9 12
</pre>
</p>
<h2>
Naming Conventions
</h2>
<p>
DLAP iterative methods, matrix vector and preconditioner
calculation routines follow a naming convention which, when
understood, allows one to determine the iterative method and data
structure(s) used. The subroutine naming convention takes the
following form:
<blockquote>
P[S][M]DESC
</blockquote>
where P stands for the precision (or data type) of the routine
and is required in all names, S denotes whether or not the
routine requires the DLAP Triad or Column format (it does if the
second letter of the name is S and does not otherwise), the
optional M stands for the type of preconditioner used (only
appears in drivers for "core" routines) and DESC is some number
of letters describing the method or purpose of the routine. In
this incarnation of DLAP only single precision data types are
supported (no double precision or complex data type routines have
been written). Hence, all routines start with an S, boring.
The brackets around S and M designate that these fields are
optional.
</p>
<p>
The following is a list of the "DESC" fields for iterative
methods and their meaning: BCG: BiConjugate Gradient; CG:
Conjugate Gradient; CGN: Conjugate Gradient on the Normal
equations; CGS, CS: biConjugate Gradient Squared; GMRES, GMR, GM:
Generalized Minimum RESidual; IR, R: Iterative Refinement; JAC:
JACobi's method; GS: Gauss-Seidel; OMN, OM: Orthomin.
</p>
<p>
Here are some examples of the routines:
<ol>
<li>
SBCG: Single precision BiConjugate Gradient "core" routine.
One can deduce that this is a "core" routine, because the S and M
fields are missing and BiConjugate Gradient is an iterative
method.
</li>
<li>
SSDBCG: Single precision, DLAP data structure BCG with
Diagonal scaling.
</li>
<li>
SSLUBC: Single precision, BCG with
incomplete LU factorization as the preconditioning.
</li>
<li>
SCG: Single precision Conjugate Gradient "core" routine.
</li>
<li>
SSDCG: Single precision, DLAP data structure Conjugate Gradient with
Diagonal scaling.
</li>
<li>
SSICCG: Single precision, DLAP data structure Conjugate Gradient
with Incomplete Cholesky factorization preconditioning.
</li>
</ol>
</p>
<h2>
Which Method To Use
</h2>
<p>
In solving a large sparse linear system Ax = b using an iterative
method, it is not necessary to actually store the matrix A.
Rather, what is needed is a procedure for multiplying the matrix
A times a given vector y to obtain the matrix-vector product, Ay.
DLAP has been written to take advantage of this fact. The higher
level routines in the package require storage only of the nonzero
elements of A (and their positions), and even this can be
avoided, if the user writes his own subroutine for multiplying
the matrix times a vector and calls the lower-level iterative
routines in the package.
</p>
<p>
If the matrix A is ill-conditioned, then most iterative methods
will be slow to converge (if they converge at all!). To improve
the convergence rate, one may use a "matrix splitting," or,
"preconditioning matrix," say, M. It is then necessary to solve,
at each iteration, a linear system with coefficient matrix M. A
good preconditioner M should have two properties: (1) M should
"approximate" A, in the sense that the matrix inv(M)*A (or some
variant thereof) is better conditioned than the original matrix
A; and (2) linear systems with coefficient matrix M should be
much easier to solve than the original system with coefficient
matrix A. Preconditioning routines in the DLAP package are
separate from the iterative routines, so that any of the
preconditioners provided in the package, or one that the user
codes, can be used with any of the iterative routines.
</p>
<p>
If you are willing to live with either the DLAP Triad or Column
matrix data structure you can then choose one of two types of
preconditioners to use: diagonal scaling or incomplete
factorization. To choose between these two methods requires
knowing something about the computer you're going to run these
codes on and how well incomplete factorization approximates the
inverse of your matrix.
</p>
<p>
Let's suppose you have a scalar machine. Then, unless the
incomplete factorization is very, very poor this is *GENERALLY*
the method to choose. It will reduce the number of iterations
significantly and is not all that expensive to compute. So if
you have just one linear system to solve and "just want to get
the job done" then try incomplete factorization first. If you
are thinking of integrating some DLAP iterative method into your
favorite "production code" then try incomplete factorization
first, but also check to see that diagonal scaling is indeed
slower for a large sample of test problems.
</p>
<p>
Let's now suppose you have a vector computer with hardware
gather/scatter support (Cray X-MP, Y-MP, SCS-40 or Cyber 205, ETA
10, ETA Piper or Convex C-1, etc.). Then it's much harder to
choose between the two methods. The versions of incomplete
factorization in DLAP do in fact vectorize, but have short vector
lengths and the factorization step is relatively more expensive.
Hence, for most problems (i.e., unless your problem is ill
conditioned, sic!) diagonal scaling is faster, with its very
fast set up time and vectorized (with long vectors)
preconditioning step (even though it may take more iterations).
If you have several systems (or right hand sides) to solve that
can utilize the same preconditioner then the cost of the
incomplete factorization can be amortized over these several
solutions. This situation gives more advantage to the incomplete
factorization methods. If you have a vector machine without
hardware gather/scatter (Cray 1, Cray 2 & Cray 3) then the
advantages for incomplete factorization are even less.
</p>
<p>
If you're trying to shoehorn DLAP into your favorite "production
code" and can not easily generate either the DLAP Triad or Column
format, then you are left to your own devices in terms of
preconditioning. Also, you may find that the preconditioners
supplied with DLAP are not sufficient for your problem. In this
situation, we would recommend that you talk with a numerical
analyst versed in iterative methods about writing other
preconditioning subroutines (e.g., polynomial preconditioning,
shifted incomplete factorization, SOR or SSOR iteration). You
can always "roll your own" by using the "core" iterative methods
and supplying your own MSOLVE and MATVEC (and possibly MTSOLV and
MTTVEC) routines. If you do develop a new preconditioner for the
DLAP data structure send the code to us (if you can do that with
no strings attached!, i.e. copyright restrictions) and we'll add
it to the package!
</p>
<p>
If your matrix is symmetric then you would want to use one of the
symmetric system solvers. If your system is also positive
definite, (Ax,x) (Ax dot product with x) is positive for all
non-zero vectors x, then use Conjugate Gradient (SCG, SSDCG,
SSICSG). If you're not sure it's SPD (symmetric and Positive
Definite) then try SCG anyway and if it works, fine. If you're
sure your matrix is not positive definite then you may want to
try the iterative refinement methods (SIR) or the GMRES code
(SGMRES) if SIR converges too slowly.
</p>
<p>
Nonsymmetric systems are an area of active research in numerical
analysis and there are new strategies being developed.
Consequently take the following advice with a grain of salt. If
your matrix is positive definite, (Ax,x) (Ax dot product with x
is positive for all non-zero vectors x), then you can use any of
the methods for nonsymmetric systems (Orthomin, GMRES,
BiConjugate Gradient, BiConjugate Gradient Squared and Conjugate
Gradient applied to the normal equations). If your system is not
too ill conditioned then try BiConjugate Gradient Squared (BCGS)
or GMRES (SGMRES). Both of these methods converge very quickly
and do not require A' or M' (' denotes transpose) information.
SGMRES does require some additional storage, though. If the
system is very ill conditioned or nearly positive indefinite
((Ax,x) is positive, but may be very small), then GMRES should
be the first choice, but try the other methods if you have to
fine tune the solution process for a "production code". If you
have a great preconditioner for the normal equations (i.e., M is
an approximation to the inverse of AA' rather than just A) then
this is not a bad route to travel. Old wisdom would say that the
normal equations are a disaster (since it squares the condition
number of the system and SCG convergence is linked to this number
of infamy), but some preconditioners (like incomplete
factorization) can reduce the condition number back below that of
the original system.
</p>
<p>
<b>DLAP</b> can store a sparse matrix in a file, using
<a href = "../../data/dlap/dlap.html">
SLAP/DLAP Sparse Matrix File Format</a>. Such a file can be written
by the routine <b>DTOUT</b>, or read back in by <b>DTIN</b>.
</p>
<p>
There is also a routine <b>DBHIN</b> which can read in a file in
<a href = "../../data/hb/hb.html">
Harwell Boeing Sparse Matrix File Format</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/blas1_d/blas1_d.html">
BLAS1_D</a>,
a FORTRAN90 library which
carries out vector-vector operations.
</p>
<p>
<a href = "../../c_src/csparse/csparse.html">
CSPARSE</a>,
a C library which
implements direct methods of solving
sparse linear systems,
by Timothy Davis.
</p>
<p>
<a href = "../../f_src/dlap_io/dlap_io.html">
DLAP_IO</a>,
a FORTRAN90 library which
reads and writes files
describing sparse matrices used by DLAP.
</p>
<p>
<a href = "../../data/dsp/dsp.html">
DSP</a>,
a data directory which
contains a description and
examples of the DSP format for storing sparse matrices,
which is equivalent to the SLAP/DLAP Triad format.
</p>
<p>
<a href = "../../f_src/hb_to_st/hb_to_st.html">
HB_TO_ST</a>,
a FORTRAN90 program which
converts the sparse matrix information stored in a Harwell-Boeing
file into a sparse triplet file.
</p>
<p>
<a href = "../../f_src/linplus/linplus.html">
LINPLUS</a>,
a FORTRAN90 library which
manipulates
matrices in a variety of formats.
</p>
<p>
<a href = "../../f_src/machine/machine.html">
MACHINE</a>,
a FORTRAN90 library which
supplies certain
machine arithmetic constants. A copy of this library
is used by <b>DLAP</b>.
</p>
<p>
<a href = "../../f_src/mgmres/mgmres.html">
MGMRES</a>,
a FORTRAN90 library which
applies the restarted GMRES algorithm
to solve a sparse linear system,
by Lili Ju.
</p>
<p>
<a href = "../../f_src/slatec/slatec.html">
SLATEC</a>,
a FORTRAN90 library which
includes <b>DLAP</b>.
</p>
<p>
<a href = "../../data/sparse_cc/sparse_cc.html">
SPARSE_CC</a>,
a data directory which
contains a description and examples of the CC format,
("compressed column") for storing a sparse matrix,
including a way to write the matrix as a set of three files.
</p>
<p>
<a href = "../../data/sparse_cr/sparse_cr.html">
SPARSE_CR</a>,
a data directory which
contains a description and examples of the CR format,
("compressed row") for storing a sparse matrix,
including a way to write the matrix as a set of three files.
</p>
<p>
<a href = "../../f_src/sparsekit/sparsekit.html">
SPARSEKIT</a>,
a FORTRAN90 library which
carries out sparse matrix operations,
by Yousef Saad.
</p>
<p>
<a href = "../../f_src/sparsepak/sparsepak.html">
SPARSEPAK</a>,
a FORTRAN90 library which
forms an obsolete version of
the Waterloo Sparse Matrix Package.
</p>
<p>
<a href = "../../f_src/xerror/xerror.html">
XERROR</a>,
is a FORTRAN90 library which
prints error message routines used by DLAP.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Anne Greenbaum, <br>
Courant Institute;<br>
<br>
Mark Seager, <br>
Lawrence Livermore National Laboratory
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Peter Brown, Alan Hindmarsh,<br>
Reduced Storage Matrix Methods In Stiff ODE Systems,<br>
Technical Report UCRL-95088, Revision 1,<br>
Lawrence Livermore National Laboratory, June 1987.
</li>
<li>
Paul Concus, Gene Golub, Dianne OLeary,<br>
A Generalized Conjugate Gradient Method for the Numerical
Solution of Elliptic Partial Differential Equations,<br>
in Symposium on Sparse Matrix Computations,<br>
edited by James Bunch, Donald Rose,<br>
Academic Press, 1979,<br>
ISBN: 0121410501,<br>
LC: QA188.S9.
</li>
<li>
Gene Golub, Charles VanLoan,<br>
Matrix Computations,<br>
Third Edition,<br>
Johns Hopkins, 1996,<br>
ISBN: 0-8018-4513-X,<br>
LC: QA188.G65.
</li>
<li>
Louis Hageman, David Young,<br>
Applied Iterative Methods,<br>
Academic Press, 1981,<br>
ISBN: 0-12-313340-8,<br>
LC: QA297.8.H34.
</li>
<li>
Ron Jones, David Kahaner,<br>
XERROR, The SLATEC Error Handling Package,<br>
Technical Report SAND82-0800,<br>
Sandia National Laboratories, 1982.
</li>
<li>
Ron Jones, David Kahaner,<br>
XERROR, The SLATEC Error Handling Package,<br>
Software: Practice and Experience,<br>
Volume 13, Number 3, 1983, pages 251-257.
</li>
<li>
Erik Kaasschieter,<br>
The solution of non-symmetric linear systems by bi-conjugate
gradients or conjugate gradients squared,<br>
Technical Report 86-21,<br>
Delft University of Technology Report, 1986.
</li>
<li>
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,<br>
Algorithm 539:
Basic Linear Algebra Subprograms for Fortran Usage,<br>
ACM Transactions on Mathematical Software,<br>
Volume 5, Number 3, September 1979, pages 308-323.
</li>
<li>
Mark Seager,<br>
A SLAP for the Masses,<br>
Technical Report: UCRL-100267,<br>
Lawrence Livermore National Laboratory, December 1988.
</li>
<li>
Richard Singleton,<br>
Algorithm 347:
An Efficient Algorithm for Sorting with Minimal Storage,<br>
Communications of the ACM,<br>
Volume 12, Number 3, March 1969, pages 185-187.
</li>
<li>
Peter Sonneveld,<br>
CGS, a fast Lanczos-type solver for nonsymmetric linear systems,<br>
Technical Report 84-16,<br>
Department of Mathematics and Informatics,<br>
Delft University of Technology, 1984.
</li>
<li>
<a href = "http://www.netlib.org/slap/index.html">
http://www.netlib.org/slap/index.html</a>,
NETLIB web site.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "dlap.f90">dlap.f90</a>, the source code.
</li>
<li>
<a href = "dlap.sh">dlap.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>DLAP_PRB</b> is a formal test program that checks all the DLAP
routines. However, it's not very useful as a template for
writing your own program!
<ul>
<li>
<a href = "dlap_prb.f90">dlap_prb.f90</a>, a sample problem.
</li>
<li>
<a href = "dlap_prb.sh">dlap_prb.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "dlap_prb_output.txt">dlap_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>DLAP_DGMRES_PRB</b> is a "simple" test program applies the GMRES
algorithm to the [-1,2,-1] matrix. No preconditioning is used. The
entries of the matrix are stored naively, in DLAP Triad format. You
might find this example easier to adapt to your own purposes.
<ul>
<li>
<a href = "dlap_dgmres_prb.f90">dlap_dgmres_prb.f90</a>,
a sample problem.
</li>
<li>
<a href = "dlap_dgmres_prb.sh">dlap_dgmres_prb.sh</a>,
commands to compile, link and run the sample problem.
</li>
<li>
<a href = "dlap_dgmres_prb_output.txt">dlap_dgmres_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>I1MACH</b> returns integer machine constants.
</li>
<li>
<b>ISAMAX</b> finds the index of the vector element of maximum absolute value.
</li>
<li>
<b>ISDBCG:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Stop Test.
</li>
<li>
<b>ISDCG</b> calculates the stop test for the Conjugate Gradient iteration scheme.
</li>
<li>
<b>ISDCGN:</b> stop test for the Conjugate Gradient applied to the normal equations.
</li>
<li>
<b>ISDCGS:</b> stop test for the BiConjugate Gradient iteration scheme.
</li>
<li>
<b>ISDGMR:</b> stop test for the GMRES iteration.
</li>
<li>
<b>ISDIR:</b> stop test for the iterative refinement iteration.
</li>
<li>
<b>ISDOMN</b> : stop test for the Orthomin iteration.
</li>
<li>
<b>J4SAVE</b> saves and recalls variables needed for error handling.
</li>
<li>
<b>QS2I1R</b> sorts an integer array, and updates companion integer and real arrays.
</li>
<li>
<b>D1MACH</b> returns double precision machine constants.
</li>
<li>
<b>RAND</b> generates a uniformly distributed random number.
</li>
<li>
<b>DASUM</b> sums the absolute values of the entries of a vector.
</li>
<li>
<b>DAMAX</b> returns the maximum absolute value of the entries in a vector.
</li>
<li>
<b>DAXPY</b> adds a constant times one vector to another.
</li>
<li>
<b>DAXPYX</b> computes a constant times a vector plus a vector.
</li>
<li>
<b>DBCG:</b> solve a Non-Symmetric system using Preconditioned BiConjugate Gradient.
</li>
<li>
<b>DBHIN:</b> read a sparse linear system in Boeing Harwell format.
</li>
<li>
<b>DCG:</b> solve PDS system using Preconditioned Conjugate Gradient.
</li>
<li>
<b>DCGN:</b> solve system using Preconditioned Conjugate Gradient/Normal Equations.
</li>
<li>
<b>DCGS</b> solve Non-Symmetric system using Preconditioned BiConjugate Gradient.
</li>
<li>
<b>DCHKW</b> checks work array lengths.
</li>
<li>
<b>DCOPY</b> copies one real vector into another.
</li>
<li>
<b>DCPPLT</b> prints a DLAP column format matrix.
</li>
<li>
<b>DDOT</b> forms the dot product of two vectors.
</li>
<li>
<b>DDSDOT</b> computes the dot product of real vectors using double precision.
</li>
<li>
<b>DGMRES</b> solves a nonsymmetric system using preconditioned GMRES.
</li>
<li>
<b>DHELS</b> minimizes the norm of B-A*X using factors from SHEQR.
</li>
<li>
<b>DHEQR</b> QR decomposes an upper Hessenberg matrix using Givens rotations.
</li>
<li>
<b>DIR:</b> Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DLLTI2</b> solves (L*D*L')*X=B, L is unit lower triangular, and D is diagonal.
</li>
<li>
<b>DNRM2</b> computes the Euclidean norm of a vector.
</li>
<li>
<b>DOMN:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Orthomin
</li>
<li>
<b>DORTH:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Generalized Minimum Residual
</li>
<li>
<b>DPIGMR:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Generalized Minimum Residual
</li>
<li>
<b>DRLCAL</b> calculates the scaled residual RL from the V(I)'s.
</li>
<li>
<b>DROT</b> applies a plane rotation.
</li>
<li>
<b>DROTG</b> constructs a Givens plane rotation.
</li>
<li>
<b>DROTM</b> applies a modified Givens plane rotation.
</li>
<li>
<b>DROTMG</b> constructs a modified Givens plane rotation.
</li>
<li>
<b>DS2LT:</b> Linear system, DLAP Sparse, Lower Triangle.
</li>
<li>
<b>DS2Y:</b> convert from DLAP Triad to DLAP Column format.
</li>
<li>
<b>DSCAL</b> scales a vector by a constant.
</li>
<li>
<b>DSD2S:</b> compute the inverse of the diagonal of A*A'.
</li>
<li>
<b>DSDBCG:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DSDCG:</b> Symmetric Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DSDCGN:</b> Non-Symmetric Linear system solve, Sparse, Iterative Precondition
</li>
<li>
<b>DSDCGS:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DSDGMR:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Generalized Minimum Residual
</li>
<li>
<b>DSDI</b> calculates the product X = DIAG*B where DIAG is a diagonal matrix.
</li>
<li>
<b>DSDOMN:</b> Non-Symmetric Linear system solve, Sparse, Iterative Precondition
</li>
<li>
<b>DSDS:</b> DLAP Sparse, Diagonal
</li>
<li>
<b>DSDSCL:</b> DLAP Sparse, Diagonal
</li>
<li>
<b>DSGS:</b> Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DSICCG:</b> Symmetric Linear system, Sparse, Iterative Precondition, Incomplete Cholesky
</li>
<li>
<b>DSICS:</b> Linear system, DLAP Sparse, Iterative Precondition, Incomplete Cholesky Factorization.
</li>
<li>
<b>DSILUR:</b> Linear system, Sparse, Iterative Precondition
</li>
<li>
<b>DSILUS:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Incomplete LU Factorization
</li>
<li>
<b>DSJAC</b> solves a linear system A*x=b using Jacobi iteration.
</li>
<li>
<b>DSLI:</b> Linear system solve, Sparse, Iterative Precondition
</li>
<li>
<b>DSLI2:</b> Linear system solve, Sparse, Iterative Precondition
</li>
<li>
<b>DSLLTI:</b> Linear system solve, Sparse, Iterative Precondition
</li>
<li>
<b>DSLUBC:</b> Non-Symmetric Linear system, Sparse, Iterative incomplete LU Precondition
</li>
<li>
<b>DSLUCN:</b> Non-Symmetric Linear system, Sparse, Iterative Incomplete LU Precondition
</li>
<li>
<b>DSLUCS:</b> Non-Symmetric Linear system, Sparse, Iterative incomplete LU Precondition
</li>
<li>
<b>DSLUGM:</b> Non-Symmetric Linear system, Sparse, Iterative Precondition, Generalized Minimum Residual
</li>
<li>
<b>DSLUI</b> applies the incomplete LU preconditioner.
</li>
<li>
<b>DSLUI2</b> carries out the incomplete LU preconditioning.
</li>
<li>
<b>DSLUI4</b> solves (L*D*U)'*X = B.
</li>
<li>
<b>DSLUOM</b> is an incomplete LU Orthomin solver for A*x=b.
</li>
<li>
<b>DSLUTI</b> is the DLAP MTSOLV for LDU Factorization.
</li>
<li>
<b>DSMMI2</b> back solves for LDU factorization of the normal equations.
</li>
<li>
<b>DSMMTI</b> is the DLAP MSOLVE for LDU Factorization of Normal Equations.
</li>
<li>
<b>DSMTV:</b> Matrix transpose Vector Multiply, Sparse
</li>
<li>
<b>DSMV,</b> Matrix Vector Multiply, Sparse
</li>
<li>
<b>DSWAP</b> interchanges two vectors.
</li>
<li>
<b>DTIN</b> Linear system, DLAP Sparse, Diagnostics
</li>
<li>
<b>DTOUT</b> writes out DLAP Triad Format Linear System.
</li>
<li>
<b>DXLCAL</b> computes the solution XL, the current DGMRES iterate.
</li>
<li>
<b>XERABT</b> aborts program execution and print error message.
</li>
<li>
<b>XERCLR</b> resets current error number to zero.
</li>
<li>
<b>XERCTL</b> allow user control over handling of errors.