-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathdiscrete_pdf_sample.html
212 lines (179 loc) · 5.79 KB
/
discrete_pdf_sample.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
<html>
<head>
<title>
DISCRETE_PDF_SAMPLE - Create and Sample a PDF Based on Sample Data
</title>
</head>
<body bgcolor="#eeeeee" link="#cc0000" alink="#ff3300" vlink="#000055">
<h1 align = "center">
DISCRETE_PDF_SAMPLE <br> Create and Sample a PDF Based on Sample Data
</h1>
<hr>
<p>
<b>DISCRETE_PDF_SAMPLE</b>
is a FORTRAN90 program which
demonstrates how to construct a Probability Density Function (PDF)
from a table of sample data, and then to use that PDF to create new samples.
</p>
<p>
The program presented here is hard-wired to handle a specific problem.
However, the ideas used in the program are easily extended to other regions
and other dimensions.
</p>
<p>
For the problem given here, we assume we have sample values of a function
<b>F(X,Y)</b> for each subregion of a region. These values might actually
represent population counts, a density, the integral of some function over
the subregion, or simply an abstract function. We implicitly assumed that
all the values are positive.
</p>
<p>
The particular region studied here is the unit square, which has been
broken down into a 20x20 array of equal subsquares.
</p>
<p>
If we normalize by the sum of the data values, the result is a PDF
associated with each subregion.
By assigning an arbitrary order to the subregions, we can add the PDF
values up to the given subregion to get a CDF (cumulative density function)
for that subregion. Now given an arbitrary random value U, we can locate
the subregion whose CDF value just exceeds U. Choosing a random point
within this subregion gives us the sample point. If we choose many such
sample points, the statistics for this sample will tend to the discrete
PDF that we defined from the data we were given.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>discrete_pdf_sample</b> <i>n</i>
</blockquote>
where
<ul>
<li>
<i>n</i> is the number of sample points desired;
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>DISCRETE_PDF_SAMPLE</b> is available in
<a href = "../../cpp_src/discrete_pdf_sample/discrete_pdf_sample.html">a C++ version</a> and
<a href = "../../f_src/discrete_pdf_sample/discrete_pdf_sample.html">a FORTRAN90 version</a> and
<a href = "../../m_src/discrete_pdf_sample/discrete_pdf_sample.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/fem1d_sample/fem1d_sample.html">
FEM1D_SAMPLE</a>,
a FORTRAN90 program which
samples a scalar or vector finite element function of one variable,
defined by <b>FEM files</b>,
returning interpolated values at the sample points.
</p>
<p>
<a href = "../../f_src/fem2d_sample/fem2d_sample.html">
FEM2D_SAMPLE</a>,
a FORTRAN90 program which
evaluates a finite element function defined on an order 3 or order 6 triangulation.
</p>
<p>
<a href = "../../f_src/prob/prob.html">
PROB</a>,
a FORTRAN90 library which
evaluates and inverts a number of probabilistic distributions.
</p>
<p>
<a href = "../../f_src/random_data/random_data.html">
RANDOM_DATA</a>,
a FORTRAN90 library which
generates sample points for
various probability distributions, spatial dimensions, and geometries;
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "discrete_pdf_sample.f90">discrete_pdf_sample.f90</a>, the source code.
</li>
<li>
<a href = "discrete_pdf_sample.sh">discrete_pdf_sample.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "discrete_pdf_sample_1000.txt">discrete_pdf_sample_1000.txt</a>,
1000 sample points generated by the program.
</li>
<li>
<a href = "discrete_pdf_sample_1000.png">discrete_pdf_sample_1000.png</a>,
a PNG image of the data.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for DISCRETE_PDF_SAMPLE.
</li>
<li>
<b>DISCRETE_CDF_TO_XY</b> finds XY points corresponding to discrete CDF values.
</li>
<li>
<b>GET_DISCRETE_PDF</b> returns the value of the discrete PDF function in each cell.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>R8MAT_WRITE</b> writes an R8MAT file.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>SET_DISCRETE_PDF</b> sets a CDF from a discrete PDF.
</li>
<li>
<b>S_TO_I4</b> reads an integer value from a string.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last modified on 03 January 2012.
</i>
<!-- John Burkardt -->
</body>
</html>