-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcondition.html
279 lines (246 loc) · 7.49 KB
/
condition.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
<html>
<head>
<title>
CONDITION - Matrix Condition Number Estimation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
CONDITION <br> Matrix Condition Number Estimation
</h1>
<hr>
<p>
<b>CONDITION</b>
is a FORTRAN90 library which
implements methods for computing or estimating the condition number of a matrix.
</p>
<p>
Let ||*|| be a matrix norm, let A be an invertible matrix, and inv(A) the inverse of A.
The condition number of A with respect to the norm ||*|| is defined to be
<pre>
kappa(A) = ||A|| * ||inv(A)||
</pre>
</p>
<p>
If A is not invertible, the condition number is taken to be infinity.
</p>
<p>
Facts about the condition number include:
<ul>
<li>
1 <= kappa(A) for all matrices A.
</li>
<li>
1 = kappa(I), where I is the identity matrix.
</li>
<li>
for the L2 matrix norm, the condition number of any orthogonal matrix is 1.
</li>
<li>
for the L2 matrix norm, the condition number is the ratio of the maximum
to minimum singular values;
</li>
</ul>
</p>
<p>
The <b>CONDITION</b> library needs access to a copy of the R8LIB library.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>CONDITION</b> is available in
<a href = "../../c_src/condition/condition.html">a C version</a> and
<a href = "../../cpp_src/condition/condition.html">a C++ version</a> and
<a href = "../../f77_src/condition/condition.html">a FORTRAN77 version</a> and
<a href = "../../f_src/condition/condition.html">a FORTRAN90 version</a> and
<a href = "../../m_src/condition/condition.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/linpack_d/linpack_d.html">
LINPACK_D</a>,
a FORTRAN90 library which
solves linear systems using double precision real arithmetic;
</p>
<p>
<a href = "../../f77_src/napack/napack.html">
NAPACK</a>,
a FORTRAN77 library which
includes many routines for applied numerical linear algebra tasks,
including the matrix condition number,
by William Hager.
</p>
<p>
<a href = "../../f_src/r8lib/r8lib.html">
R8LIB</a>,
a FORTRAN90 library which
contains many utility routines using double precision real (R8) arithmetic.
</p>
<p>
<a href = "../../f_src/test_mat/test_mat.html">
TEST_MAT</a>,
a FORTRAN90 library which
defines test matrices for which some of the determinant, eigenvalues, inverse,
null vectors, P*L*U factorization or linear system solution are already known.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Alan Cline, Cleve Moler, Pete Stewart, James Wilkinson,<br>
An estimate for the Condition Number of a Matrix,<br>
Technical Report TM-310,<br>
Argonne National Laboratory, 1977.
</li>
<li>
Alan Cline, Russell Rew,<br>
A set of counterexamples to three condition number estimators,<br>
SIAM Journal on Scientific and Statistical Computing,<br>
Volume 4, Number 4, December 1983, pages 602-611.
</li>
<li>
William Hager,<br>
Condition Estimates,<br>
SIAM Journal on Scientific and Statistical Computing,<br>
Volume 5, Number 2, June 1984, pages 311-316.
</li>
<li>
Nicholas Higham,<br>
A survey of condition number estimation for triangular matrices,<br>
SIAM Review,<br>
Volume 9, Number 4, December 1987, pages 575-596.
</li>
<li>
Diane OLeary,<br>
Estimating matrix condition numbers,<br>
SIAM Journal on Scientific and Statistical Computing,<br>
Volume 1, Number 2, June 1980, pages 205-209.
</li>
<li>
Pete Stewart,<br>
Efficient Generation of Random Orthogonal Matrices With an Application
to Condition Estimators,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 17, Number 3, June 1980, pages 403-409.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "condition.f90">condition.f90</a>, the source code.
</li>
<li>
<a href = "condition.sh">condition.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "condition_prb.f90">condition_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "condition_prb.sh">condition_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "condition_prb_output.txt">condition_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>COMBIN</b> returns the COMBIN matrix.
</li>
<li>
<b>COMBIN_INVERSE</b> returns the inverse of the COMBIN matrix.
</li>
<li>
<b>CONDITION_HAGER</b> estimates the L1 condition number of a matrix.
</li>
<li>
<b>CONDITION_LINPACK</b> estimates the L1 condition number of a matrix.
</li>
<li>
<b>CONDITION_SAMPLE1</b> estimates the L1 condition number of a matrix.
</li>
<li>
<b>CONEX1</b> returns the CONEX1 matrix.
</li>
<li>
<b>CONEX1_INVERSE</b> returns the inverse of the CONEX1 matrix.
</li>
<li>
<b>CONEX2</b> returns the CONEX2 matrix.
</li>
<li>
<b>CONEX2_INVERSE</b> returns the inverse of the CONEX2 matrix.
</li>
<li>
<b>CONEX3</b> returns the CONEX3 matrix.
</li>
<li>
<b>CONEX3_INVERSE</b> returns the inverse of the CONEX3 matrix.
</li>
<li>
<b>CONEX4</b> returns the CONEX4 matrix.
</li>
<li>
<b>CONEX4_INVERSE</b> returns the inverse CONEX4 matrix.
</li>
<li>
<b>KAHAN</b> returns the KAHAN matrix.
</li>
<li>
<b>KAHAN_INVERSE</b> returns the inverse of the KAHAN matrix.
</li>
<li>
<b>R8GE_FA</b> performs a LINPACK style PLU factorization of an R8GE matrix.
</li>
<li>
<b>R8GE_INVERSE</b> computes the inverse of a matrix factored by R8GE_FA.
</li>
<li>
<b>R8GE_SL</b> solves a system factored by R8GE_FA.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 05 October 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>