-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcommunicator_mpi.html
268 lines (226 loc) · 7.71 KB
/
communicator_mpi.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
<html>
<head>
<title>
COMMUNICATOR_MPI - Creating New Communicators in MPI
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
COMMUNICATOR_MPI <br> Creating New Communicators in MPI
</h1>
<hr>
<p>
<b>COMMUNICATOR_MPI</b>
is a FORTRAN90 program which
creates new communicators involving a subset of initial
set of MPI processes in the default communicator MPI_COMM_WORLD.
</p>
<p>
To understand this program, let's assume we run it under MPI with
4 processes. Within the default communicator, the processes will
have ID's of 0, 1, 2 and 3.
</p>
<p>
We can call MPI_Comm_group() to request that a "group id" be
created from MPI_COMM_WORLD. Then we call MPI_Group_incl(),
passing a list of a subset of the legal process ID's in MPI_COMM_WORLD,
to be identified as a new group. In particular, we'll pass the even
ID's, creating an even group, and later create an odd group in the same
way.
</p>
<p>
A group ID can be used to create a new communicator, calling
MPI_Comm_create(). Once we have this new communicator, we
can use functions like MPI_Comm_Rank() and MPI_Comm_Size(),
specifying the name of the new communicator. We then can use
a function like MPI_Reduce() to sum up data associated exclusively
with the processes in that communicator.
</p>
<p>
One complicating factor is that a process that is not part of
the new communicator cannot make an MPI call that invokes that
communicator. For instance, an odd process could not call
MPI_Comm_rank() asking for its rank in the even communicator.
If you look at the program, you will see that we have to be
careful to determine what group we are in before we make
calls to the MPI routines.
</p>
<p>
Thus, in the example, we could begin with 4 processes, whose
global ID's are 0, 1, 2 and 3. We create an even communicator
containing processes 0 and 2, and an odd communicator with 1 and 3.
Notice that, within the even communicator, the processes with
global ID's 0 and 2 have even communicator ID's of 0 and 1.
</p>
<p>
We can call MPI_Reduce() to sum the global ID's of the processes
in the even communicator, getting a result of 2; the same sum,
over the odd communicator, results in 4.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>COMMUNICATOR_MPI</b> is available in
<a href = "../../c_src/communicator_mpi/communicator_mpi.html">a C version</a> and
<a href = "../../cpp_src/communicator_mpi/communicator_mpi.html">a C++ version</a> and
<a href = "../../f77_src/communicator_mpi/communicator_mpi.html">a FORTRAN77 version</a> and
<a href = "../../f_src/communicator_mpi/communicator_mpi.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/heat_mpi/heat_mpi.html">
HEAT_MPI</a>,
a FORTRAN90 program which
solves the 1D Time Dependent Heat Equation using MPI.
</p>
<p>
<a href = "../../f_src/hello_mpi/hello_mpi.html">
HELLO_MPI</a>,
a FORTRAN90 program which
prints out "Hello, world!", using MPI for parallel execution.
</p>
<p>
<a href = "../../c_src/laplace_mpi/laplace_mpi.html">
LAPLACE_MPI</a>,
a C program which
solves Laplace's equation on a rectangle,
using MPI for parallel execution.
</p>
<p>
<a href = "../../examples/moab/moab.html">
MOAB</a>,
examples which
illustrate the use of the MOAB job scheduler for a computer cluster.
</p>
<p>
<a href = "../../f_src/mpi/mpi.html">
MPI</a>,
FORTRAN90 examples which
illustrate the use of the MPI application program interface
for carrying out parallel computatioins in a distributed memory environment.
</p>
<p>
<a href = "../../f_src/multitask_mpi/multitask_mpi.html">
MULTITASK_MPI</a>,
a FORTRAN90 program which
demonstrates how to "multitask", that is, to execute several unrelated
and distinct tasks simultaneously, using MPI for parallel execution.
</p>
<p>
<a href = "../../f_src/prime_mpi/prime_mpi.html">
PRIME_MPI</a>,
a FORTRAN90 program which
counts the number of primes between 1 and N, using MPI for parallel execution.
</p>
<p>
<a href = "../../f_src/quad_mpi/quad_mpi.html">
QUAD_MPI</a>,
a FORTRAN90 program which
approximates an integral using a quadrature rule, and carries out the
computation in parallel using MPI.
</p>
<p>
<a href = "../../f_src/random_mpi/random_mpi.html">
RANDOM_MPI</a>,
a FORTRAN90 program which
demonstrates one way to generate the same sequence of random numbers
for both sequential execution and parallel execution under MPI.
</p>
<p>
<a href = "../../f_src/ring_mpi/ring_mpi.html">
RING_MPI</a>,
a FORTRAN90 program which
uses the MPI parallel programming environment, and measures the time
necessary to copy a set of data around a ring of processes.
</p>
<p>
<a href = "../../f_src/satisfy_mpi/satisfy_mpi.html">
SATISFY_MPI</a>,
a FORTRAN90 program which
demonstrates, for a particular circuit, an exhaustive search
for solutions of the circuit satisfiability problem, using MPI to
carry out the calculation in parallel.
</p>
<p>
<a href = "../../f_src/search_mpi/search_mpi.html">
SEARCH_MPI</a>,
a FORTRAN90 program which
searches integers between A and B for a value J such that F(J) = C,
using MPI for parallel execution.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Michael Quinn,<br>
Parallel Programming in C with MPI and OpenMP,<br>
McGraw-Hill, 2004,<br>
ISBN13: 978-0071232654,<br>
LC: QA76.73.C15.Q55.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "communicator_mpi.f90">communicator_mpi.f90</a>, the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>COMMUNICATOR_LOCAL</b> compiles and runs the program on a local machine.
<ul>
<li>
<a href = "communicator_local.sh">communicator_local.sh</a>,
a script to compile and run the program.
</li>
<li>
<a href = "communicator_local_output.txt">communicator_local_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>COMMUNICATOR_FSU</b> compiles and runs the program on the FSU HPC cluster.
<ul>
<li>
<a href = "communicator_fsu.sh">communicator_fsu.sh</a>,
the MOAB script.
</li>
<li>
<a href = "communicator_fsu_output.txt">communicator_fsu_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 13 January 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>