-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathasa299.html
248 lines (210 loc) · 6.09 KB
/
asa299.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
<html>
<head>
<title>
ASA299 - Lattice Points in N-dimensional Simplex
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
ASA299 <br> Lattice Points in N-dimensional Simplex
</h1>
<hr>
<p>
<b>ASA299</b>
is a FORTRAN90 library which
generates, one at a time,
the lattice points (integer coordinates) contained in a simplex,
by Chasalow and Brand;
</p>
<p>
<b>ASA299</b> is Applied Statistics Algorithm 299. Source code for many
Applied Statistics Algorithms is available through
<a href = "http://lib.stat.cmu.edu/apstat">STATLIB</a>.
</p>
<p>
The simplex is defined by N-dimensional points <b>X</b> such that:
<blockquote><b>
0 <= X(1:N)
</b></blockquote>
and
<blockquote><b>
sum ( X(1:N) ) <= T
</b></blockquote>
where T is an integer.
</p>
<p>
Lattice points are points <b>X</b> which satisfy the simplex conditions
and for which all the components are integers.
</p>
<p>
This routine generates all the lattice points in a given simplex, one at
a time, in a reverse lexicographic order.
</p>
<p>
The output for <b>N</b> = 3, <b>T</b> = 4 would be:
<pre>
1 4 0 0
2 3 1 0
3 3 0 1
4 2 2 0
5 2 1 1
6 2 0 2
7 1 3 0
8 1 2 1
9 1 1 2
10 1 0 3
11 0 4 0
12 0 3 1
13 0 2 2
14 0 1 3
15 0 0 4
</pre>
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
call <b>simplex_lattice_point_next</b> ( n, t, more, x )
</blockquote>
</p>
<p>
To use the routine, initialize by setting the spatial dimension <b>N</b>
and the simplex size parameter <b>T</b> to appropriate values, and
set <b>MORE</b> to FALSE. The initial value of <b>X</b> is not important.
</p>
<p>
Call the routine. On return, <b>X</b> will contain the first lattice
point in the simplex. If <b>MORE</b> is TRUE, then the routine may
be called again to get the next point. In fact, as long as the output
value of <b>MORE</b> is TRUE, there is at least one more lattice point
that can be found by making another call. When <b>MORE</b> is returned
as FALSE, then there are no more lattice points; the value of <b>X</b>
returned at that time is the "last" such point.
</p>
<p>
During the computation of a sequence of lattice points, the user should
not change the values of <b>N</b>, <b>T</b>, <b>MORE</b> or <b>X</b>.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>ASA299</b> is available in
<a href = "../../c_src/asa299/asa299.html">a C version</a> and
<a href = "../../cpp_src/asa299/asa299.html">a C++ version</a> and
<a href = "../../f77_src/asa299/asa299.html">a FORTRAN77 version</a> and
<a href = "../../f_src/asa299/asa299.html">a FORTRAN90 version</a> and
<a href = "../../m_src/asa299/asa299.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/combo/combo.html">
COMBO</a>,
a FORTRAN90 library which
enumerates combinations, partitions, subsets, index sets,
and other combinatorial objects.
</p>
<p>
<a href = "../../f_src/simplex_coordinates/simplex_coordinates.html">
SIMPLEX_COORDINATES</a>,
a FORTRAN90 library which
computes the Cartesian coordinates of the vertices of a regular
simplex in M dimensions.
</p>
<p>
<a href = "../../f_src/subset/subset.html">
SUBSET</a>,
a FORTRAN90 library which
enumerates combinations, partitions, subsets, index sets,
and other combinatorial objects.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Original FORTRAN77 version by Scott Chasalow, Richard Brand;
FORTRAN90 version by John Burkardt.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Scott Chasalow, Richard Brand,<br>
Algorithm AS 299:
Generation of Simplex Lattice Points,<br>
Applied Statistics,<br>
Volume 44, Number 4, 1995, pages 534-545.
</li>
<li>
Albert Nijenhuis, Herbert Wilf,<br>
Combinatorial Algorithms for Computers and Calculators,<br>
Second Edition,<br>
Academic Press, 1978,<br>
ISBN: 0-12-519260-6,<br>
LC: QA164.N54.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "asa299.f90">asa299.f90</a>, the source code.
</li>
<li>
<a href = "asa299.sh">asa299.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "asa299_prb.f90">asa299_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "asa299_prb.sh">asa299_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "asa299_prb_output.txt">asa299_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>SIMPLEX_LATTICE_POINT_NEXT</b> generates lattice points in a simplex.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 15 March 2008.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>