Skip to content

Latest commit

 

History

History
 
 

falcon7b

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Falcon7B Demo (T3000)

Falcon7b prefill uses 8x8 core grid size, so the following environment variable needs to be set on N300 setup:

export WH_ARCH_YAML=wormhole_b0_80_arch_eth_dispatch.yaml

How to Run

To run the demo using prewritten prompts for a batch of 256 users split evenly on 8 devices run (currently only supports same token-length inputs):

pytest --disable-warnings -q -s --input-method=json --input-path='models/demos/t3000/falcon7b/input_data_t3000.json' models/demos/t3000/falcon7b/demo_t3000.py::test_demo_multichip[user_input0-8-True-default_mode_stochastic]

Inputs

A sample of input prompts for 256 users is provided in input_data_t3000.json in demo directory. If you wish you to run the model using a different set of input prompts you can provide a different path, e.g.:

pytest --disable-warnings -q -s --input-method=json --input-path='path_to_input_prompts.json' models/demos/t3000/falcon7b/demo_t3000.py::test_demo_multichip[user_input0-8-True-default_mode_stochastic]

Running on a different number of devices

To run the demo on a different number of devices, an input file with the appropriate number of inputs must be prepared (the number of inputs should be (32 x num-devices)). Then, the command above can be modified to replace '8' with the desired number of devices. For example, to run with 4 devices:

pytest --disable-warnings -q -s --input-method=json --input-path='path_to_input_prompts.json' models/demos/t3000/falcon7b/demo_t3000.py::test_demo_multichip[user_input0-4-True-default_mode_stochastic]

Details

This model picks up certain configs and weights from huggingface pretrained model. We have used tiiuae/falcon-7b-instruct version from huggingface. The first time you run the model, the weights are downloaded and stored on your machine, and it might take a few minutes. The second time you run the model on your machine, the weights are being read from your machine and it will be faster.