diff --git a/ms/data_exploration.Rmd b/ms/data_exploration.Rmd index bf9af15..5afe675 100644 --- a/ms/data_exploration.Rmd +++ b/ms/data_exploration.Rmd @@ -90,25 +90,25 @@ grubbs_tidy <- function(x, type = 10, ...) { The dataset includes biodiversity metrics and environmental data measured on native, non-hybrid ferns of Japan. -All biodiversity metrics were calculated during the `targets` workflow (`_targets.R`), and are contained in the `biodiv_ferns_cent_dryad` object in the `targets` cache. +All biodiversity metrics were calculated during the `targets` workflow (`_targets.R`), and are contained in the `biodiv_ferns_cent_figshare` object in the `targets` cache. The next step uses `tar_load()` to load the dataset from the targets cache. Alternatively, this can be loaded from the data file as shown in the commented-out code below. ```{r load-data, message = FALSE} # Load the data from the targets workflow -tar_load(biodiv_ferns_cent_dryad) +tar_load(biodiv_ferns_cent_figshare) # Alternatively, unzip `results.zip` # (FIXME: add DOI when available) # and read in the data from there -# biodiv_ferns_cent_dryad <- read_csv(here::here("japan_ferns_biodiv.csv")) +# biodiv_ferns_cent_figshare <- read_csv(here::here("japan_ferns_biodiv.csv")) ``` This dataframe actually has more variables than are needed for modeling, so we will subset it to only the relevant variables. ```{r subset-vars} -biodiv_ferns_cent_raw <- - biodiv_ferns_cent_dryad %>% +biodiv_ferns_cent_raw <- + biodiv_ferns_cent_figshare %>% select( grids, lat, long, # grid-cell ID, latitude, longitude richness, pd_obs_z, fd_obs_z, rpd_obs_z, rfd_obs_z, # response vars