This repository has been archived by the owner on Oct 30, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathevaluate.py
71 lines (56 loc) · 2.54 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
This code is modified from Hengyuan Hu's repository.
https://github.com/hengyuan-hu/bottom-up-attention-vqa
"""
import argparse
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
from dataset import Dictionary, VQAFeatureDataset, Flickr30kFeatureDataset
import base_model
import utils
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='vqa', help='vqa or flickr')
parser.add_argument('--num_hid', type=int, default=1280)
parser.add_argument('--model', type=str, default='ban')
parser.add_argument('--op', type=str, default='c')
parser.add_argument('--gamma', type=int, default=8)
parser.add_argument('--input', type=str, default='saved_models/ban')
parser.add_argument('--epoch', type=int, default=12)
parser.add_argument('--batch_size', type=int, default=256)
args = parser.parse_args()
return args
if __name__ == '__main__':
print('Evaluate a given model optimized by training split using validation split.')
args = parse_args()
torch.backends.cudnn.benchmark = True
if args.task == 'vqa':
from train import evaluate
dict_path = 'data/dictionary.pkl'
dictionary = Dictionary.load_from_file(dict_path)
eval_dset = VQAFeatureDataset('val', dictionary, adaptive=True)
elif args.task == 'flickr':
from train_flickr import evaluate
dict_path = 'data/flickr30k/dictionary.pkl'
dictionary = Dictionary.load_from_file(dict_path)
eval_dset = Flickr30kFeatureDataset('test', dictionary)
args.op = ''
args.gamma = 1
n_device = torch.cuda.device_count()
batch_size = args.batch_size * n_device
constructor = 'build_%s' % args.model
model = getattr(base_model, constructor)(eval_dset, args.num_hid, args.op, args.gamma, args.task).cuda()
model_data = torch.load(args.input+'/model'+('_epoch%d' % args.epoch if 0 < args.epoch else '')+'.pth')
model = nn.DataParallel(model).cuda()
model.load_state_dict(model_data.get('model_state', model_data))
eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1, collate_fn=utils.trim_collate)
model.train(False)
eval_score, bound, entropy = evaluate(model, eval_loader)
if args.task == 'vqa':
print('\teval score: %.2f (%.2f)' % (100 * eval_score, 100 * bound))
elif args.task == 'flickr':
print('\teval score: %.2f/%.2f/%.2f (%.2f)' % (
100 * eval_score[0], 100 * eval_score[1], 100 * eval_score[2], 100 * bound))