forked from JungKH33/face-similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
58 lines (46 loc) · 1.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import cosine_similarity
import os
from scipy.optimize import fsolve
def plot_matrix(matrix):
plt.figure(figsize=(16, 12))
sns.heatmap(matrix, annot=True, cmap= 'coolwarm', fmt='.2f', cbar=True, square=True, vmin=-1, vmax=1)
plt.title('Matrix')
plt.xlabel('Index')
plt.ylabel('Index')
plt.show()
def save_matrix(matrix, save_path):
plt.figure(figsize=(16, 12))
sns.heatmap(matrix, annot=True, cmap= 'coolwarm', fmt='.2f', cbar=True, square=True, vmin=-1, vmax=1)
plt.title('Matrix')
plt.xlabel('People')
plt.ylabel('People')
plt.savefig(save_path, format='png')
plt.close()
def calculate_similarity(embedding1, embedding2 = None, metric = 'cosine'):
metrics = {
'cosine': cosine_similarity,
'l2': pairwise_distances
}
if embedding2 is None:
similarity_matrix = metrics[metric](embedding1)
else:
similarity_matrix = metrics[metric](embedding1, embedding2)
return similarity_matrix
def calculate_average(array, mask_diagonal = False):
if mask_diagonal:
mask = ~np.eye(array.shape[0], dtype=bool)
array = array[mask]
return np.average(array)
def find_intersection(graph1, graph2, min, max, initial_guess):
x_values = np.linspace(min, max, 1000)
def intersection(x):
return graph1.evaluate(x) - graph2.evaluate(x)
intersection_point = fsolve(intersection, initial_guess)
return intersection_point
def save_path_gen(save_dir, model, backend, type, ext = '.png'):
save_path = os.path.join(save_dir, str(model)+'_'+str(backend) + '_' + str(type) + str(ext))
return save_path