diff --git a/src/mesh/vtk_helper.jl b/src/mesh/vtk_helper.jl index 1e65533f..8f7a819b 100644 --- a/src/mesh/vtk_helper.jl +++ b/src/mesh/vtk_helper.jl @@ -33,7 +33,7 @@ Compute the coordinates of a `VTK_LAGRANGE_TRIANGLE` of a triangle or order `ord defined by the coordinates of the vertices given in `corner_verts`. `dim` is the dimension of the coordinates given. If `skip` is set to true, the coordinates of the vertex- and edge-points aren't computed, which can be used to compute -points of a `VTK_LAGRANGE_WEDGE` +points of a `VTK_LAGRANGE_TRIANGLE` Inspired by: https://github.com/ju-kreber/paraview-scripts/blob/master/node_ordering.py """ function triangle_vtk_order(corner_verts, order, dim, skip = false) @@ -50,14 +50,14 @@ function triangle_vtk_order(corner_verts, order, dim, skip = false) coords = corner_verts end #edge vertices - num_verts_on_edge = order -1 + num_nodes_on_edge = order -1 # edges in vtk-order vtk_edges = SVector((1,2), (2,3), (3,1)) for (frm, to) in vtk_edges if skip == false - tmp = n_verts_between(num_verts_on_edge, corner_verts[:, frm], corner_verts[:, to]) + tmp = n_verts_between(num_nodes_on_edge, corner_verts[:, frm], corner_verts[:, to]) tmp_vec = Vector{Float64}(undef, dim) - for i in 1:num_verts_on_edge + for i in 1:num_nodes_on_edge for j in 1:dim tmp_vec[j] = tmp[j][i] end @@ -85,24 +85,24 @@ Compute the coordinates of a VTK_LAGRANGE_QUAD of a quad of order `order` defined by the coordinates of the vertices given in `corner_verts`. `dim` is the dimension of the coordinates given. If `skip` is set to true, the coordinates of the vertex- and edge-points aren't computed, which can be used to compute -points of a `VTK_LAGRANGE_WEDGE` +points of a `VTK_LAGRANGE_QUAD` Inspired by: https://github.com/ju-kreber/paraview-scripts/blob/master/node_ordering.py """ function quad_vtk_order(corner_verts, order, dim, skip = false) @assert order >= 0 "`order` must be non-negative." - + coords = Matrix{Float64}(undef, dim, 0) if skip == false coords = copy(corner_verts) end - num_verts_on_edge = order - 1 + num_nodes_on_edge = order - 1 edges = SVector((1,2), (2,3), (4,3), (1,4)) for (frm, to) in edges if skip == false - tmp = n_verts_between(num_verts_on_edge, corner_verts[:, frm], corner_verts[:, to]) + tmp = n_verts_between(num_nodes_on_edge, corner_verts[:, frm], corner_verts[:, to]) tmp_vec = Vector{Float64}(undef, dim) - for i in 1:num_verts_on_edge + for i in 1:num_nodes_on_edge for j in 1:dim tmp_vec[j] = tmp[j][i] end @@ -113,10 +113,10 @@ function quad_vtk_order(corner_verts, order, dim, skip = false) e_x = (corner_verts[:, 2] .- corner_verts[:, 1]) ./ order e_y = (corner_verts[:, 4] .- corner_verts[:, 1]) ./ order pos_y = copy(corner_verts[:, 1]) - for i in 1:num_verts_on_edge + for i in 1:num_nodes_on_edge pos_y = pos_y .+ e_y pos_yx = pos_y - for j in 1:num_verts_on_edge + for j in 1:num_nodes_on_edge pos_yx = pos_yx .+ e_x coords = hcat(coords, pos_yx) end @@ -124,6 +124,105 @@ function quad_vtk_order(corner_verts, order, dim, skip = false) return coords end +""" + hex_vtk_order(corner_verts, order, dim, skip = false) + +Compute the coordinates of a VTK_LAGRANGE_HEXAHEDRON of a hex of order `order` +defined by the coordinates of the vertices given in `corner_verts`. `dim` is +the dimension of the coordinates given. If `skip` is set to true, the +coordinates of the vertex- and edge-points aren't computed, which can be used +to compute points of a `VTK_LAGRANGE_HEXHEDRON` + +Inspired by: https://github.com/ju-kreber/paraview-scripts/blob/master/node_ordering.py + +VTK node numbering of a hexagon: + + 8+------+7 + /| /| + / | / | + 5+------+6 | + z | 4+---|--+3 + | y | / | / + |/ |/ |/ + 0--> x 1+------+2 + +""" +function hex_vtk_order(corner_verts, order, dim, skip = false) + + @assert order >= 0 "`order` must be non-negative." + + coords = copy(corner_verts) + if order == 0 + return coords + end + + # Edges. + num_nodes_on_edge = order - 1 + edges = SVector( + # VTK ordering. See hexagon schematic above. + (1,2), (2,3), (4,3), (1,4), # bottom face + (5,6), (6,7), (8,7), (5,8), # top face + (1,5), (2,6), (4,8), (3,7), # vertical lines + ) + for (frm, to) in edges + tmp = n_verts_between(num_nodes_on_edge, corner_verts[:, frm], corner_verts[:, to]) + tmp_vec = Vector{Float64}(undef, dim) + for i in 1:num_nodes_on_edge + for j in 1:dim + tmp_vec[j] = tmp[j][i] + end + coords = hcat(coords, tmp_vec) + end + end + + # Faces. + quad_faces = SVector( + # VTK ordering. See hexagon schematic above. + (1,4,8,5), # left + (2,3,7,6), # right + (1,2,6,5), # front + (4,3,7,8), # back + (1,2,3,4), # bottom + (5,6,7,8), # top + ) + for indices in quad_faces + tmp_vec = Vector{Float64}(undef, dim) + quad_nodes = Matrix{Float64}(undef, dim, 0) + for j in indices + quad_nodes = hcat(quad_nodes, corner_verts[:, j]) + end + face_coords = quad_vtk_order(quad_nodes, order, 3, true) + if length(face_coords) > 0 + for i in 1:size(face_coords)[2] + for j in 1:dim + tmp_vec[j] = face_coords[j,i] + end + coords = hcat(coords, tmp_vec) + end + end + end + + # Volume. + e_z = (corner_verts[:,5] - corner_verts[:,1]) ./ order + interior_quad_verts = [corner_verts[:,1] corner_verts[:,2] corner_verts[:,3] corner_verts[:,4]] + face_coords = quad_vtk_order(interior_quad_verts, order, 3, true) + face_coords = sort_by_axis(face_coords) + for i in range(1, num_nodes_on_edge) + tmp_vec = Vector{Float64}(undef, dim) + face_coords = face_coords .+ e_z + if length(face_coords) > 0 + for k in 1:size(face_coords, 2) + for j in 1:dim + tmp_vec[j] = face_coords[j,k] + end + coords = hcat(coords, tmp_vec) + end + end + end + + return coords +end + """ wedge_vtk_order(corner_verts, order, dim) @@ -140,12 +239,12 @@ function wedge_vtk_order(corner_verts, order, dim) if order == 0 return coords end - num_verts_on_edge = order - 1 + num_nodes_on_edge = order - 1 edges = SVector((1,2), (2,3), (3,1), (4,5), (5,6), (6,4), (1,4), (2,5), (3,6)) for (frm, to) in edges - tmp = n_verts_between(num_verts_on_edge, corner_verts[:, frm], corner_verts[:, to]) + tmp = n_verts_between(num_nodes_on_edge, corner_verts[:, frm], corner_verts[:, to]) tmp_vec = Vector{Float64}(undef, dim) - for i in 1:num_verts_on_edge + for i in 1:num_nodes_on_edge for j in 1:dim tmp_vec[j] = tmp[j][i] end @@ -195,7 +294,7 @@ function wedge_vtk_order(corner_verts, order, dim) interior_tri_verts = [corner_verts[:,1] corner_verts[:,2] corner_verts[:,3]] face_coords = triangle_vtk_order(interior_tri_verts, order, 3, true) face_coords = sort_by_axis(face_coords) - for i in range(1, num_verts_on_edge) + for i in range(1, num_nodes_on_edge) tmp_vec = Vector{Float64}(undef, dim) face_coords = face_coords .+ e_z if length(face_coords) > 0 @@ -236,6 +335,19 @@ function vtk_order(::Quad, order) return quad_vtk_order(quad_vtk_vertices, order, 2) end +""" + vtk_order(elem::Hex, order) + +Construct all node-points of a VTK_LAGRANGE_HEXAHEDRON of order `order`. The +corner-nodes are given by the reference hexahedron used by StartUpDG in the +order defined by vtk. +""" +function vtk_order(::Hex, order) + hex_sud_vertices = permutedims(hcat(nodes(Hex(), 1)...)) + perm = SVector(1, 2, 4, 3, 5, 6, 8, 7) + hex_vtk_vertices = hex_sud_vertices[:, perm] + return hex_vtk_order(hex_vtk_vertices, order, 3) +end """ vtk_order(elem::Wedge, order) @@ -285,6 +397,14 @@ function type_to_vtk(elem::Quad) return VTKCellTypes.VTK_LAGRANGE_QUADRILATERAL end +""" + type_to_vtk(elem::Hex) + return the VTK-type +""" +function type_to_vtk(elem::Hex) + return VTKCellTypes.VTK_LAGRANGE_HEXAHEDRON +end + """ type_to_vtk(elem::Wedge) return the VTK-type diff --git a/test/write_vtk_tests.jl b/test/write_vtk_tests.jl index d218f5ac..e2bcdde8 100644 --- a/test/write_vtk_tests.jl +++ b/test/write_vtk_tests.jl @@ -8,11 +8,14 @@ deg_one_order(::Tri) = permutedims(hcat(nodes(Tri(), 1)...)) deg_zero_order(::Tri) = [-1.0; -1.0] deg_one_order(::Quad) = [-1.0 1.0 1.0 -1.0; -1.0 -1.0 1.0 1.0] + deg_one_order(::Hex) = [-1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0; + -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0; + -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0] deg_one_order(::Wedge) = [-1.0 1.0 -1.0 -1.0 1.0 -1.0; -1.0 -1.0 1.0 -1.0 -1.0 1.0; -1.0 -1.0 -1.0 1.0 1.0 1.0] - deg_zero_order(elem::Union{Quad, Wedge}) = deg_one_order(elem) + deg_zero_order(elem::Union{Quad, Hex, Wedge}) = deg_one_order(elem) - @testset "VTKWriter test for $elem" for elem in [Tri(), Quad(), Wedge()] + @testset "VTKWriter test for $elem" for elem in [Tri(), Quad(), Hex(), Wedge()] N = 3 # test only N=3 for CI time @testset "Write Mesh" begin rd = RefElemData(elem, N) @@ -56,4 +59,4 @@ end end -end # VTK tests \ No newline at end of file +end # VTK tests