forked from google-deepmind/alphafold3
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_alphafold_data_test.py
279 lines (238 loc) · 9.34 KB
/
run_alphafold_data_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2024 DeepMind Technologies Limited
#
# AlphaFold 3 source code is licensed under CC BY-NC-SA 4.0. To view a copy of
# this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
#
# To request access to the AlphaFold 3 model parameters, follow the process set
# out at https://github.com/google-deepmind/alphafold3. You may only use these
# if received directly from Google. Use is subject to terms of use available at
# https://github.com/google-deepmind/alphafold3/blob/main/WEIGHTS_TERMS_OF_USE.md
"""Tests the AlphaFold 3 data pipeline."""
import contextlib
import datetime
import difflib
import functools
import hashlib
import json
import os
import pathlib
import pickle
from typing import Any
from absl.testing import absltest
from absl.testing import parameterized
from alphafold3 import structure
from alphafold3.common import folding_input
from alphafold3.common import resources
from alphafold3.common.testing import data as testing_data
from alphafold3.constants import chemical_components
from alphafold3.data import featurisation
from alphafold3.data import pipeline
from alphafold3.model.atom_layout import atom_layout
from alphafold3.structure import test_utils
import jax
import numpy as np
import run_alphafold
import shutil
_JACKHMMER_BINARY_PATH = shutil.which('jackhmmer')
_NHMMER_BINARY_PATH = shutil.which('nhmmer')
_HMMALIGN_BINARY_PATH = shutil.which('hmmalign')
_HMMSEARCH_BINARY_PATH = shutil.which('hmmsearch')
_HMMBUILD_BINARY_PATH = shutil.which('hmmbuild')
@contextlib.contextmanager
def _output(name: str):
with open(result_path := f'{absltest.TEST_TMPDIR.value}/{name}', "wb") as f:
yield result_path, f
@functools.singledispatch
def _hash_data(x: Any, /) -> str:
if x is None:
return '<<None>>'
return _hash_data(json.dumps(x).encode('utf-8'))
@_hash_data.register
def _(x: bytes, /) -> str:
return hashlib.sha256(x).hexdigest()
@_hash_data.register
def _(x: jax.Array) -> str:
return _hash_data(jax.device_get(x))
@_hash_data.register
def _(x: np.ndarray) -> str:
if x.dtype == object:
return ';'.join(map(_hash_data, x.ravel().tolist()))
return _hash_data(x.tobytes())
@_hash_data.register
def _(_: structure.Structure) -> str:
return '<<structure>>'
@_hash_data.register
def _(_: atom_layout.AtomLayout) -> str:
return '<<atom-layout>>'
def _generate_diff(actual: str, expected: str) -> str:
return '\n'.join(
difflib.unified_diff(
expected.split('\n'),
actual.split('\n'),
fromfile='expected',
tofile='actual',
lineterm='',
)
)
class DataPipelineTest(test_utils.StructureTestCase):
"""Test AlphaFold 3 inference."""
def setUp(self):
super().setUp()
small_bfd_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/bfd-first_non_consensus_sequences__subsampled_1000.fasta'
).path()
mgnify_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/mgy_clusters__subsampled_1000.fa'
).path()
uniprot_cluster_annot_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/uniprot_all__subsampled_1000.fasta'
).path()
uniref90_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/uniref90__subsampled_1000.fasta'
).path()
ntrna_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/nt_rna_2023_02_23_clust_seq_id_90_cov_80_rep_seq__subsampled_1000.fasta'
).path()
rfam_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/rfam_14_4_clustered_rep_seq__subsampled_1000.fasta'
).path()
rna_central_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/rnacentral_active_seq_id_90_cov_80_linclust__subsampled_1000.fasta'
).path()
pdb_database_path = testing_data.Data(
resources.ROOT / 'test_data/miniature_databases/pdb_mmcif'
).path()
seqres_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/pdb_seqres_2022_09_28__subsampled_1000.fasta'
).path()
self._data_pipeline_config = pipeline.DataPipelineConfig(
jackhmmer_binary_path=_JACKHMMER_BINARY_PATH,
nhmmer_binary_path=_NHMMER_BINARY_PATH,
hmmalign_binary_path=_HMMALIGN_BINARY_PATH,
hmmsearch_binary_path=_HMMSEARCH_BINARY_PATH,
hmmbuild_binary_path=_HMMBUILD_BINARY_PATH,
small_bfd_database_path=small_bfd_database_path,
mgnify_database_path=mgnify_database_path,
uniprot_cluster_annot_database_path=uniprot_cluster_annot_database_path,
uniref90_database_path=uniref90_database_path,
ntrna_database_path=ntrna_database_path,
rfam_database_path=rfam_database_path,
rna_central_database_path=rna_central_database_path,
pdb_database_path=pdb_database_path,
seqres_database_path=seqres_database_path,
max_template_date=datetime.date(2021, 9, 30),
)
test_input = {
'name': '5tgy',
'modelSeeds': [1234],
'sequences': [
{
'protein': {
'id': 'A',
'sequence': 'SEFEKLRQTGDELVQAFQRLREIFDKGDDDSLEQVLEEIEELIQKHRQLFDNRQEAADTEAAKQGDQWVQLFQRFREAIDKGDKDSLEQLLEELEQALQKIRELAEKKN',
'modifications': [],
'unpairedMsa': None,
'pairedMsa': None,
}
},
{'ligand': {'id': 'B', 'ccdCodes': ['7BU']}},
],
'dialect': folding_input.JSON_DIALECT,
'version': folding_input.JSON_VERSION,
}
self._test_input_json = json.dumps(test_input)
def compare_golden(self, result_path: str) -> None:
filename = os.path.split(result_path)[1]
golden_path = testing_data.Data(
resources.ROOT / f'test_data/{filename}'
).path()
with open(golden_path, 'r') as golden_file:
golden_text = golden_file.read()
with open(result_path, 'r') as result_file:
result_text = result_file.read()
diff = _generate_diff(result_text, golden_text)
self.assertEqual(diff, "", f"Result differs from golden:\n{diff}")
def test_config(self):
model_config = run_alphafold.make_model_config()
model_config_as_str = json.dumps(
model_config.as_dict(), sort_keys=True, indent=2
)
with _output('model_config.json') as (result_path, output):
output.write(model_config_as_str.encode('utf-8'))
self.compare_golden(result_path)
def test_featurisation(self):
"""Run featurisation and assert that the output is as expected."""
fold_input = folding_input.Input.from_json(self._test_input_json)
data_pipeline = pipeline.DataPipeline(self._data_pipeline_config)
full_fold_input = data_pipeline.process(fold_input)
featurised_example = featurisation.featurise_input(
full_fold_input,
ccd=chemical_components.cached_ccd(),
buckets=None,
)
with _output('featurised_example.pkl') as (_, output):
output.write(pickle.dumps(featurised_example))
featurised_example = jax.tree_util.tree_map(_hash_data, featurised_example)
with _output('featurised_example.json') as (result_path, output):
output.write(
json.dumps(featurised_example, sort_keys=True, indent=2).encode(
'utf-8'
)
)
self.compare_golden(result_path)
def test_write_input_json(self):
fold_input = folding_input.Input.from_json(self._test_input_json)
output_dir = self.create_tempdir().full_path
run_alphafold.write_fold_input_json(fold_input, output_dir)
with open(
os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'),
'rt',
) as f:
actual_fold_input = folding_input.Input.from_json(f.read())
self.assertEqual(actual_fold_input, fold_input)
def test_process_fold_input_runs_only_data_pipeline(self):
fold_input = folding_input.Input.from_json(self._test_input_json)
output_dir = self.create_tempdir().full_path
run_alphafold.process_fold_input(
fold_input=fold_input,
data_pipeline_config=self._data_pipeline_config,
model_runner=None,
output_dir=output_dir,
)
with open(
os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'),
'rt',
) as f:
actual_fold_input = folding_input.Input.from_json(f.read())
featurisation.validate_fold_input(actual_fold_input)
@parameterized.product(num_db_dirs=tuple(range(1, 3)))
def test_replace_db_dir(self, num_db_dirs: int) -> None:
"""Test that the db_dir is replaced correctly."""
db_dirs = [pathlib.Path(self.create_tempdir()) for _ in range(num_db_dirs)]
db_dirs_posix = [db_dir.as_posix() for db_dir in db_dirs]
for i, db_dir in enumerate(db_dirs):
for j in range(i + 1):
(db_dir / f'filename{j}.txt').write_text(f'hello world {i}')
for i in range(num_db_dirs):
self.assertEqual(
pathlib.Path(
run_alphafold.replace_db_dir(
f'${{DB_DIR}}/filename{i}.txt', db_dirs_posix
)
).read_text(),
f'hello world {i}',
)
with self.assertRaises(FileNotFoundError):
run_alphafold.replace_db_dir(
f'${{DB_DIR}}/filename{num_db_dirs}.txt', db_dirs_posix
)
if __name__ == '__main__':
absltest.main()