-
Notifications
You must be signed in to change notification settings - Fork 26
/
ch-seq-ser.tex
4917 lines (4452 loc) · 155 KB
/
ch-seq-ser.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Sequences and Series} \label{seq:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Sequences and limits}
\label{sec:seqsandlims}
%mbxINTROSUBSECTION
\sectionnotes{2.5 lectures}
Analysis is essentially about taking limits. The most basic type of a limit
is a limit of a sequence of real numbers.
We have already seen sequences used informally. Let us give the formal
definition.
\begin{defn}
A \emph{\myindex{sequence}} (of real numbers) is a function $x \colon \N \to
\R$. Instead of $x(n)$, we
usually denote the $n$th element in the sequence by $x_n$.
To denote a sequence we write%
\footnote{It is common to use $\{ x_n \}$ or $\{ x_n \}_n$ for brevity.}%
\glsadd{not:sequence}%
\begin{equation*}
\{ x_n \}_{n=1}^\infty.
\end{equation*}
%to denote a sequence, though sometimes for brevity we may use $\{ x_n \}$.
A sequence $\{ x_n \}_{n=1}^\infty$ is \emph{bounded}\index{bounded sequence} if
the underlying function is bounded. That is, if
there exists a $B \in \R$ such that
\begin{equation*}
\abs{x_n} \leq B \qquad \text{for all } n \in \N.
\end{equation*}
In other words, the sequence $\{x_n\}_{n=1}^\infty$ is bounded whenever
the set $\{ x_n : n \in \N \}$
is bounded.
We similarly define the words
\emph{bounded below}\index{bounded below!sequence} and
\emph{bounded above}\index{bounded above!sequence}.
\end{defn}
When we need
to give a concrete sequence, we often give each term as a formula in
terms of $n$.
For example, $\{ \nicefrac{1}{n} \}_{n=1}^\infty$ stands for
the sequence $1, \nicefrac{1}{2}, \nicefrac{1}{3}, \nicefrac{1}{4},
\nicefrac{1}{5}, \ldots$.
The sequence $\{ \nicefrac{1}{n} \}_{n=1}^\infty$
is a bounded sequence ($B=1$ suffices). On the other hand, the sequence
$\{ n \}_{n=1}^\infty$ stands for
$1,2,3,4,\ldots$, and this sequence is not bounded (why?).
While the notation for a sequence
is similar\footnote{\cite{BS} use $(x_n)_{n=1}^\infty$ to denote
a sequence instead of $\{ x_n \}_{n=1}^\infty$, which is what \cite{Rudin:baby} uses.
Both are common.}
to that of a set, the notions are
distinct. For example, the sequence $\bigl\{ {(-1)}^n \bigr\}_{n=1}^\infty$ is the sequence
$-1,1,-1,1,-1,1,\ldots$, whereas the set of values, the
\emph{range of the sequence}\index{range of a sequence},
is just the set $\{ -1, 1 \}$. We write this set
as $\bigl\{ {(-1)}^n : n \in \N \bigr\}$.
% When ambiguity can arise, we
%use the words \emph{sequence} or \emph{set} to distinguish the two
%concepts.
Another example of a sequence is the so-called \emph{\myindex{constant sequence}}.
That is a sequence $\{ c \}_{n=1}^\infty = c,c,c,c,\ldots$ consisting of a single
constant $c \in \R$ repeating indefinitely.
%We now get to the idea of a
%\emph{limit of a sequence}\index{limit!of a sequence}.
%We will see in \propref{prop:limisunique}
%that a limit, if it exists, is unique.
%It makes sense to talk about \emph{the} limit of a sequence.
\begin{defn}
A sequence $\{ x_n \}_{n=1}^\infty$ is said to \emph{converge} to a number
$x \in \R$ if for every $\epsilon > 0$, there exists an $M \in \N$ such
that $\abs{x_n - x} < \epsilon$ for all $n \geq M$.
The number $x$ is called a \emph{limit} of the sequence.
If the limit $x$ is unique, we write%
\footnote{In text, this may get rendered as $\lim_{n\to\infty} x_n$.}
\glsadd{not:limseq}%
\begin{equation*}
\lim_{n\to \infty} x_n \coloneqq x .
\end{equation*}
A sequence
that converges is said to be \emph{convergent}\index{convergent!sequence}.
Otherwise, we say the sequence \emph{diverges}
or that it is
\emph{divergent}\index{divergent!sequence}.
\end{defn}
Shortly, in \propref{prop:limisunique} we will show that the limit $x$ is always
unique if it exists. It makes sense to talk about \emph{the} limit of
a sequence and we only need to show that the sequence converges to one
number.
For the next couple of examples, let us pretend
we have already proved that limits are unique.
Intuitively, the limit being $x$ means that eventually
every number in the sequence is close to the number $x$. More precisely,
we get arbitrarily close to the limit, provided we go far enough in the
sequence. It does not mean we ever reach the limit. It is possible,
and quite common, that there is no $x_n$ in the sequence that equals the
limit $x$.
We illustrate the concept in \figureref{figsequenceconvergence}. In the
figure we first think of the sequence as a graph, as it is a function of
$\N$. Secondly, we also plot it as a sequence of labeled points on the real
line.
\begin{myfigureht}
\subimport*{figures/}{sequence-convergence_full.pdf_t}
\caption{Illustration of convergence.
On top, we show the first ten points of the sequence as a graph
with $M$ and the interval around the limit $x$ marked.
On bottom, the points of the same sequence are marked on the
number line.\label{figsequenceconvergence}}
\end{myfigureht}
When we write $\lim_{n\to\infty} x_n = x$ for some real number $x$, we are saying two
things: First, that $\{ x_n \}_{n=1}^\infty$ is convergent, and second, that the limit is
$x$.
The definition above is one of the most important definitions in analysis,
and it is necessary to understand it perfectly. The key point in the
definition is that given \emph{any} $\epsilon > 0$, we can find an $M$. The
$M$ can depend on $\epsilon$, so we only pick an $M$ once we know
$\epsilon$. Let us illustrate convergence on a few examples.
\begin{example}
The constant sequence $1,1,1,1,\ldots$ converges to 1. For
every $\epsilon > 0$, pick $M = 1$. That is, $\sabs{x_n-x} = \sabs{1-1} < \epsilon$ for all $n$.
\end{example}
\begin{example}
Claim: \emph{The sequence $\{ \nicefrac{1}{n} \}_{n=1}^\infty$ is convergent and}
\begin{equation*}
\lim_{n\to \infty} \frac{1}{n} = 0 .
\end{equation*}
Proof: Given an $\epsilon > 0$, find an $M \in \N$ such that
$0 < \nicefrac{1}{M} < \epsilon$
(\hyperref[thm:arch:i]{Archimedean property} at work).
For all $n \geq M$,
\begin{equation*}
\abs{x_n - x}
=
\abs{\frac{1}{n} - 0} = \abs{\frac{1}{n}} = \frac{1}{n} \leq \frac{1}{M} < \epsilon .
\end{equation*}
\end{example}
\begin{example}
The sequence $\bigl\{ {(-1)}^n \bigr\}_{n=1}^\infty$ is divergent. Proof: If there
were a limit $x$, then for $\epsilon = \frac{1}{2}$ we expect an $M$ that
satisfies the definition. Suppose
such an $M$ exists.
Then for an even $n \geq M$, we compute
\begin{equation*}
\nicefrac{1}{2} > \abs{x_n - x} = \abs{1 - x}
\qquad \text{and} \qquad
\nicefrac{1}{2} > \abs{x_{n+1} - x} = \abs{-1 - x} .
\end{equation*}
And we obtain a contradiction
\begin{equation*}
2 = \abs{1 - x - (-1 -x)} \leq
\abs{1 - x} + \abs{-1 -x} < \nicefrac{1}{2} + \nicefrac{1}{2} = 1 .
\end{equation*}
\end{example}
\begin{prop} \label{prop:limisunique}
A convergent sequence has a unique limit.
\end{prop}
The proof of this proposition exhibits a useful technique in
analysis. Many proofs follow the same general scheme. We want to
show a certain quantity is zero. We write the quantity using the
triangle inequality as two quantities, and we estimate each one
by arbitrarily small numbers.
\begin{proof}
%NOTE: should be word for word the same as 7.3.3
Suppose $\{ x_n \}_{n=1}^\infty$ has limits $x$ and $y$.
Take an arbitrary $\epsilon > 0$.
From the definition find an $M_1$ such that for all $n \geq M_1$,
$\abs{x_n-x} < \nicefrac{\epsilon}{2}$. Similarly, find an $M_2$
such that for all $n \geq M_2$, we have
$\abs{x_n-y} < \nicefrac{\epsilon}{2}$.
Now take an $n$ such that $n \geq M_1$ and also $n \geq M_2$, and estimate
\begin{equation*}
\begin{split}
\abs{y-x}
& =
\abs{x_n-x - (x_n -y)} \\
& \leq
\abs{x_n-x} + \abs{x_n -y} \\
& <
\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon .
\end{split}
\end{equation*}
As $\abs{y-x} < \epsilon$ for all $\epsilon > 0$, then $\abs{y-x} = 0$
and $y=x$. Hence the limit (if it exists) is unique.
\end{proof}
\begin{prop}
A convergent sequence $\{ x_n \}_{n=1}^\infty$ is bounded.
\end{prop}
\begin{proof}
Suppose $\{ x_n \}_{n=1}^\infty$ converges to $x$. Thus there exists an $M \in \N$
such that for all $n \geq M$, we have
$\abs{x_n - x} < 1$. For $n \geq M$,
\begin{equation*}
\begin{split}
\abs{x_n} & = \abs{x_n - x + x}
\\
& \leq \abs{x_n - x} + \abs{x}
\\
& < 1 + \abs{x} .
\end{split}
\end{equation*}
The set $\bigl\{ \abs{x_1}, \abs{x_2}, \ldots, \abs{x_{M-1}} , 1+\sabs{x} \bigr\}$
is a finite set and hence let
\begin{equation*}
B \coloneqq \max \bigl\{ \abs{x_1}, \abs{x_2}, \ldots, \abs{x_{M-1}}, 1+\sabs{x} \bigr\} .
\end{equation*}
Then for all $n \in \N$,
\begin{equation*}
\abs{x_n} \leq B. \qedhere
\end{equation*}
\end{proof}
The sequence $\bigl\{ {(-1)}^n \bigr\}_{n=1}^\infty$ shows that the converse
does not hold. A bounded sequence is not necessarily convergent.
\begin{example}
Let us show $\left\{ \frac{n^2+1}{n^2+n} \right\}_{n=1}^\infty$ converges and
\begin{equation*}
\lim_{n\to\infty} \frac{n^2+1}{n^2+n} = 1 .
\end{equation*}
Given $\epsilon > 0$,
find $M \in \N$ such that $\frac{1}{M} < \epsilon$. Then for all $n \geq
M$,
\begin{equation*}
\begin{split}
%\abs{\frac{n^2+1}{n^2+n} - 1} & =
%\abs{\frac{n^2+1 - (n^2+n)}{n^2+n}} \\
\abs{\frac{n^2+1}{n^2+n} - 1} =
\abs{\frac{n^2+1 - (n^2+n)}{n^2+n}}
& =
\abs{\frac{1 - n}{n^2+n}} \\
& =
\frac{n-1}{n^2+n} \\
& \leq
\frac{n}{n^2+n}
=
\frac{1}{n+1} \\
& \leq \frac{1}{n}
\leq \frac{1}{M} < \epsilon .
\end{split}
\end{equation*}
Therefore,
$\lim_{n\to\infty} \frac{n^2+1}{n^2+n} = 1$.
This example shows that sometimes to get what you want, you must throw away
some information to get a simpler estimate.
\end{example}
\subsection{Monotone sequences}
The simplest type of a sequence is a monotone sequence. Checking that
a monotone sequence converges is as easy as checking that it is bounded.
It is also easy to find
the limit for a convergent
monotone sequence, provided we can find the supremum or infimum
of a countable set of numbers.
\begin{defn}
A sequence $\{ x_n \}_{n=1}^\infty$ is \emph{monotone increasing}\index{monotone
increasing sequence} if $x_n \leq x_{n+1}$ for all $n \in \N$.
%
A sequence $\{ x_n \}_{n=1}^\infty$ is \emph{monotone decreasing}\index{monotone
decreasing sequence} if $x_n \geq x_{n+1}$ for all $n \in \N$.
%
If a sequence is either monotone increasing or monotone decreasing, we
can simply say the sequence is \emph{monotone}\index{monotone
sequence}.\footnote{Some
authors use the word \emph{monotonic}\index{monotonic sequence}.}
\end{defn}
For example,
$\{ n \}_{n=1}^\infty$ is monotone increasing,
$\{ \nicefrac{1}{n} \}_{n=1}^\infty$ is monotone decreasing,
the constant sequence $\{ 1 \}_{n=1}^\infty$ is both monotone increasing and monotone
decreasing, and $\bigl\{ {(-1)}^n \bigr\}_{n=1}^\infty$ is not monotone.
First few terms of a sample monotone increasing sequence
are shown in
\figureref{figsequenceincreasing}.
\begin{myfigureht}
\includegraphics{figures/sequence-increasing}
\caption{First few terms of a monotone increasing sequence as a
graph.\label{figsequenceincreasing}}
\end{myfigureht}
\begin{thm}[Monotone convergence theorem] \label{thm:monotoneconv}
\index{monotone convergence theorem}%
A monotone sequence $\{ x_n \}_{n=1}^\infty$ is bounded if and only if it is convergent.
Furthermore, if $\{ x_n \}_{n=1}^\infty$ is monotone increasing and bounded, then
\begin{equation*}
\lim_{n\to \infty} x_n = \sup \{ x_n : n \in \N \} .
\end{equation*}
If $\{ x_n \}_{n=1}^\infty$ is monotone decreasing and bounded, then
\begin{equation*}
\lim_{n\to \infty} x_n = \inf \{ x_n : n \in \N \} .
\end{equation*}
\end{thm}
\begin{proof}
Consider a monotone increasing sequence $\{ x_n \}_{n=1}^\infty$. Suppose
first the sequence is bounded,
that is,
the set $\{ x_n : n \in \N \}$ is bounded. Let
\begin{equation*}
x \coloneqq \sup \{ x_n : n \in \N \} .
\end{equation*}
Let $\epsilon > 0$ be arbitrary. As $x$ is the supremum,
there must be at least one $M \in \N$ such that $x_{M} > x-\epsilon$.
As $\{ x_n \}_{n=1}^\infty$ is monotone increasing,
then it is easy to see (by \hyperref[induction:thm]{induction}) that
$x_n \geq x_{M}$ for all $n \geq M$. Hence for all $n \geq M$,
\begin{equation*}
\abs{x_n-x} = x-x_n \leq x-x_{M} < \epsilon .
\end{equation*}
So $\{ x_n \}_{n=1}^\infty$ converges to $x$.
Therefore, a bounded monotone increasing sequence converges.
For the other direction, we already proved that a convergent sequence
is bounded.
The proof for monotone decreasing sequences is left as an exercise.
\end{proof}
A monotone increasing sequence $\{ x_n \}_{n=1}^\infty$
is always bounded from below since $x_1 \leq x_2 \leq \cdots \leq x_n$
for any $n$, so $x_1$ is a lower bound. So to see if a
monotone increasing sequence is bounded, it is enough to check if
it is bounded above. Similarly, a monotone decreasing sequence
is always bounded from above, so it is enough to check whether it
is bounded from below.
\begin{example}
Take the sequence $\bigl\{ \frac{1}{\sqrt{n}} \bigr\}_{n=1}^\infty$.
The sequence is
bounded below as
$\frac{1}{\sqrt{n}} > 0$ for all $n \in \N$.
Let us show that it is monotone decreasing. We start with
$\sqrt{n+1} \geq \sqrt{n}$ (why is that true?). From this inequality
we obtain
\begin{equation*}
\frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}} .
\end{equation*}
So the sequence is monotone decreasing and bounded below (hence
bounded). Via \thmref{thm:monotoneconv} we find that the sequence is
convergent and
\begin{equation*}
\lim_{n\to \infty} \frac{1}{\sqrt{n}}
=
\inf \left\{ \frac{1}{\sqrt{n}} : n \in \N \right\} .
\end{equation*}
We already know that the infimum is greater than or equal to 0, as
0 is a lower bound. Take a number $b \geq 0$ such
that $b \leq \frac{1}{\sqrt{n}}$ for all $n$. We square both sides to
obtain
\begin{equation*}
b^2 \leq \frac{1}{n} \qquad \text{for all } n \in \N.
\end{equation*}
We have seen before that this implies that $b^2 \leq 0$ (a consequence
of the \hyperref[thm:arch:i]{Archimedean property}). As $b^2 \geq 0$ as
well, we have $b^2 = 0$
and so $b = 0$.
Hence, $b=0$ is the greatest lower bound, and $\lim\limits_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.
\end{example}
\begin{example}
A word of caution: Showing that a monotone sequence is bounded
in order to use \thmref{thm:monotoneconv} may be difficult.
The sequence
$\{ 1 + \nicefrac{1}{2} + \cdots + \nicefrac{1}{n} \}_{n=1}^\infty$
is a monotone increasing
sequence that grows slowly and in fact grows slower and slower as $n$ gets
larger. We will see, once we get to series,
that this sequence has no upper bound and so does not converge. It is not
at all obvious that this sequence has no upper bound.
\end{example}
A common example of where monotone sequences arise is the following
proposition. The proof is left as an exercise.
\begin{prop} \label{prop:supinfseq}
Let $S \subset \R$ be a nonempty bounded set.
Then there exist monotone sequences
$\{ x_n \}_{n=1}^\infty$ and $\{ y_n \}_{n=1}^\infty$ such that $x_n, y_n \in S$ and
\begin{equation*}
\sup\,S = \lim_{n\to \infty} x_n \qquad \text{and} \qquad \inf\,S =
\lim_{n\to\infty} y_n .
\end{equation*}
\end{prop}
\subsection{Tail of a sequence}
\begin{defn}
For a sequence $\{ x_n \}_{n=1}^\infty$,
the \emph{$K$-tail} (where $K \in \N$),
or just the
\emph{tail},\index{tail of a sequence} of
$\{ x_n \}_{n=1}^\infty$ is the sequence starting at $K+1$, usually written as
\begin{equation*}
\{ x_{n+K} \}_{n=1}^\infty
\qquad \text{or} \qquad \{ x_n \}_{n=K+1}^\infty .
\end{equation*}
\end{defn}
For example, the $4$-tail of $\{ \nicefrac{1}{n} \}_{n=1}^\infty$ is
$\nicefrac{1}{5}, \nicefrac{1}{6}, \nicefrac{1}{7}, \nicefrac{1}{8},
\ldots$. The $0$-tail of a sequence is the sequence itself.
The convergence and the limit of a sequence only depends on its tail.
\begin{prop}
Let $\{ x_n \}_{n=1}^\infty$ be a sequence. Then the following
statements are equivalent:
\begin{enumerate}[(i)]
\item \label{prop:ktail:i}
The sequence $\{ x_n \}_{n=1}^\infty$ converges.
\item \label{prop:ktail:ii}
The $K$-tail $\{ x_{n+K} \}_{n=1}^\infty$ converges for all $K \in \N$.
\item \label{prop:ktail:iii}
The $K$-tail $\{ x_{n+K} \}_{n=1}^\infty$ converges for some $K \in \N$.
\end{enumerate}
Furthermore, if any (and hence all) of the limits exist, then for all $K \in \N$
\begin{equation*}
\lim_{n\to \infty} x_n = \lim_{n \to \infty} x_{n+K} .
\end{equation*}
\end{prop}
\begin{proof}
It is clear that
\ref{prop:ktail:ii} implies \ref{prop:ktail:iii}.
We will therefore show first that
\ref{prop:ktail:i}
implies
\ref{prop:ktail:ii},
and then we will show that
\ref{prop:ktail:iii}
implies
\ref{prop:ktail:i}. That is,
%mbxSTARTIGNORE
\begin{equation*}
\begin{tikzcd}[row sep=0pt]
& \text{\ref{prop:ktail:ii}} \ar[dr, Rightarrow] & \\
\text{\ref{prop:ktail:i}} \ar[ur, Rightarrow, "\text{to prove}"] & &
\text{\ref{prop:ktail:iii}} \ar[ll, Rightarrow, "\text{to prove}"]
\end{tikzcd}
\end{equation*}
%mbxENDIGNORE
%mbxlatex \begin{center}
%mbxlatex \subimport*{figures/}{tail_of_sequence_cd.pdf_t}
%mbxlatex \end{center}
In the process we will also show that the limits are equal.
We start with \ref{prop:ktail:i} implies \ref{prop:ktail:ii}.
Suppose $\{x_n \}_{n=1}^\infty$ converges to some $x \in \R$.
Let $K \in \N$ be arbitrary, and
define $y_n \coloneqq x_{n+K}$. We wish to show that $\{ y_n \}_{n=1}^\infty$ converges
to $x$.
Given an $\epsilon > 0$, there exists an $M \in \N$ such that
$\abs{x-x_n} < \epsilon$ for all $n \geq M$.
Note that $n \geq M$ implies $n+K \geq M$. Therefore, for
all $n \geq M$, we have
\begin{equation*}
\abs{x-y_n} = \abs{x-x_{n+K}} < \epsilon .
\end{equation*}
Consequently, $\{ y_n \}_{n=1}^\infty$ converges to $x$.
Let us move to \ref{prop:ktail:iii} implies \ref{prop:ktail:i}.
Let $K \in \N$ be given, define
$y_n \coloneqq x_{n+K}$, and suppose that $\{ y_n \}_{n=1}^\infty$ converges to $x \in \R$.
That is, given an $\epsilon > 0$, there exists an $M' \in \N$ such that
$\abs{x-y_n} < \epsilon$ for all $n \geq M'$.
Let $M \coloneqq M'+K$. Then $n \geq M$ implies $n-K \geq M'$.
Thus, whenever $n \geq M$, we have
\begin{equation*}
\abs{x-x_n} = \abs{x-y_{n-K}} < \epsilon.
\end{equation*}
Therefore, $\{ x_n \}_{n=1}^\infty$ converges to $x$.
\end{proof}
At the end of the day, the limit does not care about how the sequence begins, it only
cares about the tail of the sequence. The beginning of the sequence
may be arbitrary.
For example, the sequence defined by $x_n \coloneqq \frac{n}{n^2+16}$ is decreasing
if we start at $n=4$ (it is increasing before). That is:
$\{ x_n \}_{n=1}^\infty =
\nicefrac{1}{17},
\nicefrac{1}{10},
\nicefrac{3}{25},
\nicefrac{1}{8},
\nicefrac{5}{41},
\nicefrac{3}{26},
\nicefrac{7}{65},
\nicefrac{1}{10},
\nicefrac{9}{97},
\nicefrac{5}{58},\ldots$, and
\begin{equation*}
\nicefrac{1}{17} <
\nicefrac{1}{10} <
\nicefrac{3}{25} <
\nicefrac{1}{8} >
\nicefrac{5}{41} >
\nicefrac{3}{26} >
\nicefrac{7}{65} >
\nicefrac{1}{10} >
\nicefrac{9}{97} >
\nicefrac{5}{58} > \ldots .
\end{equation*}
If we throw away the first 3 terms
and look at the 3-tail, it is decreasing. The proof is left as an exercise. Since the 3-tail
is monotone and bounded below by zero, it is convergent, and therefore the sequence is convergent.
\subsection{Subsequences}
It is useful to sometimes consider only some terms of a sequence.
A subsequence of $\{ x_n \}_{n=1}^\infty$ is a sequence that contains
only some of the numbers from $\{ x_n \}_{n=1}^\infty$ in the same order.
\begin{defn}
Let $\{ x_n \}_{n=1}^\infty$ be a sequence.
Let $\{ n_i \}_{i=1}^\infty$ be a strictly increasing sequence of natural
numbers, that is, $n_i < n_{i+1}$ for all $i \in \N$ (in other words $n_1 < n_2 < n_3 < \cdots$).
The sequence
\begin{equation*}
\{ x_{n_i} \}_{i=1}^\infty
\end{equation*}
is called \glsadd{not:subsequence}
a \emph{\myindex{subsequence}} of $\{ x_n \}_{n=1}^\infty$.
\end{defn}
So the subsequence is the sequence $x_{n_1},x_{n_2},x_{n_3},\ldots$.
Consider the sequence $\{ \nicefrac{1}{n} \}_{n=1}^\infty$. The sequence
$\{ \nicefrac{1}{3i} \}_{i=1}^\infty
= 1,\nicefrac{1}{3},\nicefrac{1}{6},\nicefrac{1}{9},\ldots$
is a subsequence. To see how these two
sequences fit in the definition, take $n_i \coloneqq 3i$,
that is, $\{ n_i \}_{i=1}^\infty$ is the
sequence $3,6,9,12,\ldots$.
The numbers $x_{n_i}$ in the
subsequence must come from the original sequence. So $1,0,\nicefrac{1}{3},0,
\nicefrac{1}{5},\ldots$
is not a subsequence of $\{ \nicefrac{1}{n} \}_{n=1}^\infty$. Similarly, order
must be preserved. So
the sequence $1,\nicefrac{1}{3},\nicefrac{1}{2},\nicefrac{1}{5},\ldots$
is not a subsequence of $\{ \nicefrac{1}{n} \}_{n=1}^\infty$.
A tail of a sequence is one special type of a subsequence. For an arbitrary
subsequence, we have the following proposition about convergence.
\begin{prop} \label{prop:seqtosubseq}
If $\{ x_n \}_{n=1}^\infty$ is a convergent sequence,
then every subsequence $\{ x_{n_i} \}_{i=1}^\infty$ is also convergent, and
\begin{equation*}
\lim_{n\to \infty} x_n =
\lim_{i\to \infty} x_{n_i} .
\end{equation*}
\end{prop}
\begin{proof}
Suppose $\lim_{n\to \infty} x_n = x$. So for every
$\epsilon > 0$, there is an $M \in \N$ such that for all $n \geq M$,
\begin{equation*}
\abs{x_n - x} < \epsilon .
\end{equation*}
It is not hard to prove (do it!) by \hyperref[induction:thm]{induction} that
$n_i \geq i$ for all $i \in \N$. Hence $i \geq M$ implies $n_i \geq M$. Thus,
for all $i \geq M$,
\begin{equation*}
\abs{x_{n_i} - x} < \epsilon ,
\end{equation*}
and we are done.
\end{proof}
\begin{example}
Existence of a convergent subsequence does not imply
convergence of the sequence itself.
Take the sequence $0,1,0,1,0,1,\ldots$. That is,
$x_n = 0$ if $n$ is odd, and $x_n = 1$ if $n$ is even. The sequence
$\{ x_n \}_{n=1}^\infty$ is divergent; however, the subsequence
$\{ x_{2i} \}_{i=1}^\infty$ converges to 1 and the subsequence
$\{ x_{2i+1} \}_{i=1}^\infty$ converges to 0. Compare \propref{seqconvsubseqconv:prop}.
\end{example}
\subsection{Exercises}
\begin{exnote}
In the following exercises, feel free to use what you know from calculus to
find the limit, if it exists. But you must \emph{prove}
that you
found the correct limit, or prove that the sequence is divergent.
\end{exnote}
\begin{exercise}
Is the sequence
$\{ 3n \}_{n=1}^\infty$
bounded? Prove or disprove.
\end{exercise}
\begin{exercise}
Is the sequence
$\{ n \}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise}
Is the sequence
$\left\{ \dfrac{{(-1)}^n}{2n} \right\}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise}
Is the sequence
$\{ 2^{-n} \}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise}
Is the sequence
$\left\{ \dfrac{n}{n+1} \right\}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise}
Is the sequence
$\left\{ \dfrac{n}{n^2+1} \right\}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise} \label{exercise:absconv}
Let $\{ x_n \}_{n=1}^\infty$ be a sequence.
\begin{enumerate}[a)]
\item Show that $\lim\limits_{n\to\infty} x_n = 0$ (that is, the limit exists and is zero)
if and only if $\lim\limits_{n\to\infty} \abs{x_n} = 0$.
\item Find an example such that $\{ \abs{x_n} \}_{n=1}^\infty$ converges and
$\{ x_n \}_{n=1}^\infty$
diverges.
\end{enumerate}
\end{exercise}
\begin{exercise}
Is the sequence
$\left\{ \dfrac{2^n}{n!} \right\}_{n=1}^\infty$
convergent? If so, what is the limit?
\end{exercise}
\begin{exercise}
Show that the sequence
$\left\{ \dfrac{1}{\sqrt[3]{n}} \right\}_{n=1}^\infty$ is monotone and bounded. Then use
\thmref{thm:monotoneconv} to find the limit.
\end{exercise}
\begin{exercise}
Show that the sequence
$\left\{ \dfrac{n+1}{n} \right\}_{n=1}^\infty$
is monotone and bounded. Then use
\thmref{thm:monotoneconv} to find the limit.
\end{exercise}
\begin{exercise}
Finish the proof of \thmref{thm:monotoneconv} for monotone decreasing
sequences.
\end{exercise}
\begin{exercise}
Prove \propref{prop:supinfseq}.
\end{exercise}
\begin{exercise}
Let $\{ x_n \}_{n=1}^\infty$ be a convergent monotone sequence. Suppose
there exists a $k \in \N$ such that
\begin{equation*}
\lim_{n\to \infty} x_n = x_k .
\end{equation*}
Show that $x_n = x_k$ for all $n \geq k$.
\end{exercise}
\begin{exercise}
\pagebreak[2]
Find a convergent subsequence of the sequence
$\bigl\{ {(-1)}^n \bigr\}_{n=1}^\infty$.
\end{exercise}
\begin{exercise}
Let $\{x_n\}_{n=1}^\infty$ be a sequence defined by
\begin{equation*}
x_n \coloneqq
\begin{cases}
n & \text{if } n \text{ is odd} , \\
\nicefrac{1}{n} & \text{if } n \text{ is even} .
\end{cases}
\avoidbreak
\end{equation*}
\begin{enumerate}[a)]
\item Is the sequence bounded? (prove or disprove)
\item Is there a convergent subsequence? If so, find it.
\end{enumerate}
\end{exercise}
\begin{exercise}
\pagebreak[2]
Let $\{ x_n \}_{n=1}^\infty$ be a sequence.
Suppose there are two convergent subsequences $\{ x_{n_i} \}_{i=1}^\infty$ and
$\{ x_{m_i} \}_{i=1}^\infty$. Suppose
\begin{equation*}
\lim_{i\to\infty} x_{n_i} = a
\qquad \text{and} \qquad
\lim_{i\to\infty} x_{m_i} = b,
\end{equation*}
where $a \not= b$. Prove that $\{ x_n \}_{n=1}^\infty$ is not convergent, without
using \propref{prop:seqtosubseq}.
\end{exercise}
\begin{exercise}[Tricky]
Find a sequence $\{ x_n \}_{n=1}^\infty$ such that for every $y \in \R$, there exists a
subsequence $\{ x_{n_i} \}_{i=1}^\infty$ converging to $y$.
\end{exercise}
\begin{exercise}[Easy]
Let $\{ x_n \}_{n=1}^\infty$ be a sequence and $x \in \R$.
Suppose for every $\epsilon > 0$, there is an $M$ such that
$\abs{x_n-x} \leq \epsilon$ for all $n \geq M$.
Show that $\lim\limits_{n\to\infty} x_n = x$.
\end{exercise}
\begin{exercise}[Easy]
Let $\{ x_n \}_{n=1}^\infty$ be a sequence and $x \in \R$ such that
there exists a $k \in \N$ such that for all $n \geq k$,
$x_n = x$. Prove that $\{ x_n \}_{n=1}^\infty$ converges to $x$.
\end{exercise}
\begin{exercise}
Let $\{ x_n \}_{n=1}^\infty$ be a sequence and
define a sequence $\{ y_n \}_{n=1}^\infty$ by
$y_{2k} \coloneqq x_{k^2}$ and $y_{2k-1} \coloneqq x_k$ for all $k \in \N$.
Prove that $\{ x_n \}_{n=1}^\infty$ converges if and only if
$\{ y_n \}_{n=1}^\infty$ converges.
Furthermore, prove that if they converge, then
$\lim\limits_{n\to\infty} x_n = \lim\limits_{n\to\infty} y_n$.
\end{exercise}
\begin{exercise}
Show that the 3-tail of the sequence defined by $x_n \coloneqq \frac{n}{n^2+16}$ is
monotone decreasing. Hint: Suppose $n \geq m \geq 4$ and consider the
numerator of the expression $x_n-x_m$.
\end{exercise}
\begin{exercise}
Suppose that $\{ x_n \}_{n=1}^\infty$ is a sequence such that
the subsequences $\{ x_{2n} \}_{n=1}^\infty$, $\{ x_{2n-1} \}_{n=1}^\infty$, and
$\{ x_{3n} \}_{n=1}^\infty$ all converge. Show that $\{ x_n \}_{n=1}^\infty$ is convergent.
\end{exercise}
\begin{exercise}
Suppose that $\{ x_n \}_{n=1}^\infty$ is a monotone increasing sequence that
has a convergent subsequence.
Show that $\{ x_n \}_{n=1}^\infty$ is convergent.
Note: So \propref{prop:seqtosubseq} is an \myquote{if and only if} for monotone sequences.
\end{exercise}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Facts about limits of sequences}
\label{sec:factslimsseqs}
%mbxINTROSUBSECTION
\sectionnotes{2--2.5 lectures, recursively defined sequences can safely be
skipped}
In this section we go over some basic results about the limits of
sequences.
We start by looking at how sequences interact with inequalities.
\subsection{Limits and inequalities}
A basic lemma about limits and inequalities is the so-called squeeze lemma.
It allows us to show convergence of sequences in difficult cases
if we find two other simpler convergent sequences that
\myquote{squeeze} the original sequence.
\begin{lemma}[Squeeze lemma]\index{squeeze lemma} \label{squeeze:lemma}
Let $\{ a_n \}_{n=1}^\infty$,
$\{ b_n \}_{n=1}^\infty$, and
$\{ x_n \}_{n=1}^\infty$ be sequences such that
\begin{equation*}
a_n \leq x_n \leq b_n \quad \text{for all } n \in \N.
\end{equation*}
Suppose $\{ a_n \}_{n=1}^\infty$ and $\{ b_n \}_{n=1}^\infty$ converge and
\begin{equation*}
\lim_{n\to \infty} a_n
=
\lim_{n\to \infty} b_n .
\end{equation*}
Then $\{ x_n \}_{n=1}^\infty$ converges and
\begin{equation*}
\lim_{n\to \infty} x_n
=
\lim_{n\to \infty} a_n
=
\lim_{n\to \infty} b_n .
\end{equation*}
\end{lemma}
\begin{proof}
Let $x \coloneqq \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.
Let $\epsilon > 0$ be given.
Find an $M_1$ such that for all $n \geq M_1$, we have
that $\abs{a_n-x} < \epsilon$, and an $M_2$
such that for all $n \geq M_2$,
we have $\abs{b_n-x} < \epsilon$. Set $M \coloneqq \max \{M_1, M_2 \}$.
Suppose $n \geq M$.
In particular,
$x - a_n < \epsilon$, or
$x - \epsilon < a_n$. Similarly, $b_n < x + \epsilon$.
Putting everything together, we find
\begin{equation*}
x - \epsilon < a_n \leq x_n \leq b_n < x + \epsilon .
\end{equation*}
In other words, $-\epsilon < x_n-x < \epsilon$ or $\abs{x_n-x} < \epsilon$.
So $\{x_n\}_{n=1}^\infty$ converges to $x$.
See \figureref{figsqueeze}.
\end{proof}
\begin{myfigureht}
\subimport*{figures/}{figsqueeze.pdf_t}
\caption{Squeeze lemma proof in picture.\label{figsqueeze}}
\end{myfigureht}
\begin{example}
One application of
the \hyperref[squeeze:lemma]{squeeze lemma} is to compute limits of
sequences using limits that we already know. For example, consider
the sequence $\bigl\{ \frac{1}{n\sqrt{n}} \bigr\}_{n=1}^\infty$.
Since $\sqrt{n} \geq 1$ for all $n \in \N$, we have
\begin{equation*}
0 \leq \frac{1}{n\sqrt{n}} \leq \frac{1}{n}
\end{equation*}
for all $n \in \N$. We already know $\lim_{n\to\infty} \nicefrac{1}{n} = 0$.
Hence, using
the constant sequence $\{ 0 \}_{n=1}^\infty$ and the sequence
$\{ \nicefrac{1}{n} \}_{n=1}^\infty$ in the
squeeze lemma, we conclude
\begin{equation*}
\lim_{n\to\infty} \frac{1}{n\sqrt{n}} = 0 .
\end{equation*}
\end{example}
Limits, when they exist, preserve non-strict inequalities.
\begin{lemma} \label{limandineq:lemma}
Let $\{ x_n \}_{n=1}^\infty$ and $\{ y_n \}_{n=1}^\infty$ be
convergent sequences and
\begin{equation*}
x_n \leq y_n \quad \text{for all } n \in \N .
\end{equation*}
Then
\begin{equation*}
\lim_{n\to\infty} x_n \leq
\lim_{n\to\infty} y_n .
\end{equation*}
\end{lemma}
\begin{proof}
Let $x \coloneqq \lim_{n\to\infty} x_n$ and $y \coloneqq \lim_{n\to\infty} y_n$.
Let
$\epsilon > 0$ be given. Find an $M_1$ such that for all $n \geq M_1$,
we have $\abs{x_n-x} < \nicefrac{\epsilon}{2}$. Find an $M_2$ such that
for all $n \geq M_2$, we have
$\abs{y_n-y} < \nicefrac{\epsilon}{2}$. In particular,
for some $n \geq \max\{ M_1, M_2 \}$, we have
$x-x_n < \nicefrac{\epsilon}{2}$ and
$y_n-y < \nicefrac{\epsilon}{2}$. We add these inequalities to
obtain
\begin{equation*}
y_n-x_n+x-y < \epsilon, \qquad \text{or} \qquad
y_n-x_n < y-x+ \epsilon .
\end{equation*}
Since $x_n \leq y_n$, we have
$0 \leq y_n-x_n$ and hence $0 < y-x+ \epsilon$.
In other words,
\begin{equation*}
x-y < \epsilon .
\end{equation*}
Because $\epsilon > 0$ was arbitrary, we obtain
$x-y \leq 0$.
Therefore, $x \leq y$.
\end{proof}
The next corollary follows by
using constant sequences in
\lemmaref{limandineq:lemma}. The proof is left as an exercise.
\begin{samepage}
\begin{cor} \label{limandineq:cor}
\leavevmode
\begin{enumerate}[(i)]
\item If $\{ x_n \}_{n=1}^\infty$ is a convergent sequence such that $x_n \geq 0$ for all
$n \in \N$,
then
\begin{equation*}
\lim_{n\to\infty} x_n \geq 0.
\end{equation*}
\item
Let $a,b \in \R$ and
let $\{ x_n \}_{n=1}^\infty$ be a convergent sequence such that
\begin{equation*}
a \leq x_n \leq b \quad \text{for all } n \in \N .
\end{equation*}
Then
\begin{equation*}
a \leq \lim_{n\to\infty} x_n \leq b.
\end{equation*}
\end{enumerate}
\end{cor}
\end{samepage}
In \lemmaref{limandineq:lemma} and \corref{limandineq:cor} we cannot simply replace
all the non-strict inequalities with
strict inequalities. For example,
let $x_n \coloneqq \nicefrac{-1}{n}$ and $y_n \coloneqq \nicefrac{1}{n}$.
Then $x_n < y_n$, $x_n < 0$,
and $y_n > 0$ for all $n$. However, these inequalities are
not preserved by the limit operation as
$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$.
The moral of this example is that strict inequalities may become non-strict
inequalities when limits are applied; if we know
$x_n < y_n$ for all $n$,
we may only conclude
\begin{equation*}
\lim_{n \to \infty} x_n \leq
\lim_{n \to \infty} y_n .
\end{equation*}
This issue is a common source of errors.
\subsection{Continuity of algebraic operations}
Limits interact nicely with algebraic operations.
\begin{prop} \label{prop:contalg}
Let $\{ x_n \}_{n=1}^\infty$ and $\{ y_n \}_{n=1}^\infty$ be convergent sequences.
\begin{enumerate}[(i)]
\item \label{prop:contalg:i}
The sequence $\{ z_n \}_{n=1}^\infty$, where $z_n \coloneqq x_n + y_n$, converges and
\begin{equation*}
\lim_{n \to \infty} (x_n + y_n) =
\lim_{n \to \infty} z_n =
\lim_{n \to \infty} x_n +
\lim_{n \to \infty} y_n .
\end{equation*}
\item \label{prop:contalg:ii}
The sequence $\{ z_n \}_{n=1}^\infty$, where $z_n \coloneqq x_n - y_n$, converges and
\begin{equation*}
\lim_{n \to \infty} (x_n - y_n) =
\lim_{n \to \infty} z_n =
\lim_{n \to \infty} x_n -
\lim_{n \to \infty} y_n .
\end{equation*}
\item \label{prop:contalg:iii}
The sequence $\{ z_n \}_{n=1}^\infty$, where $z_n \coloneqq x_n y_n$, converges and
\begin{equation*}
\lim_{n \to \infty} (x_n y_n) =
\lim_{n \to \infty} z_n =
\left( \lim_{n \to \infty} x_n \right)
\left( \lim_{n \to \infty} y_n \right) .
\end{equation*}
\item \label{prop:contalg:iv}
If $\lim_{n\to\infty} y_n \not= 0$ and $y_n \not= 0$ for all $n \in \N$, then
the sequence $\{ z_n \}_{n=1}^\infty$, where $z_n \coloneqq \dfrac{x_n}{y_n}$, converges and
\begin{equation*}
\lim_{n \to \infty} \frac{x_n}{y_n} =
\lim_{n \to \infty} z_n =
\frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} .
\end{equation*}
\end{enumerate}
\end{prop}
\begin{proof}
We start with \ref{prop:contalg:i}.