-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathch-seq-funcs.tex
2083 lines (1902 loc) · 67.2 KB
/
ch-seq-funcs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Sequences of Functions} \label{fs:chapter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Pointwise and uniform convergence}
\label{sec:puconv}
%mbxINTROSUBSECTION
\sectionnotes{1--1.5 lecture}
Up till now, when we talked about limits of sequences we talked about
sequences of numbers.
A very useful concept in analysis is a sequence of functions.
For example, a solution to some differential equation
might be found by finding only approximate solutions.
Then the actual solution is some sort of limit of those approximate solutions.
When talking about sequences of functions, the
tricky part is that there are multiple notions of a limit.
Let us describe two common
notions of a limit of a sequence of functions.
\subsection{Pointwise convergence}
\begin{defn}
\index{pointwise convergence}
For every $n \in \N$,
let $f_n \colon S \to \R$ be a function. The sequence
$\{ f_n \}_{n=1}^\infty$
\emph{\myindex{converges pointwise}}\footnote{Unless otherwise specified,
\emph{converges} generally means \emph{converges pointwise}.}
to $f \colon S \to \R$ if for every $x
\in S$,
we have
\begin{equation*}
f(x) =
\lim_{n\to\infty} f_n(x) .
\end{equation*}
\end{defn}
Limits of sequences of numbers are unique, and so if a sequence
$\{ f_n \}_{n=1}^\infty$
converges pointwise, the limit function $f$ is unique.
It is common to say that $f_n \colon S \to \R$
\emph{converges pointwise to $f$ on $T \subset S$}
for some $f \colon T \to \R$. In that case we mean
$f(x) = \lim_{n\to\infty} f_n(x)$ for every $x \in T$. In other words, the
restrictions of $f_n$ to $T$ converge pointwise to $f$.
\begin{example}
On $[-1,1]$, the sequence of functions defined by $f_n(x) \coloneqq x^{2n}$
converges pointwise to $f \colon [-1,1] \to \R$, where
\begin{equation*}
f(x) =
\begin{cases}
1 & \text{if } x=-1 \text{ or } x=1, \\
0 & \text{otherwise.}
\end{cases}
\avoidbreak
\end{equation*}
See \figureref{x2nfig}.
\begin{myfigureht}
\includegraphics{figures/x2nfig}
\caption{Graphs of $f_1$, $f_2$, $f_3$, and $f_8$ for $f_n(x) \coloneqq
x^{2n}$.\label{x2nfig}}
\end{myfigureht}
To see this is so, first take $x \in (-1,1)$. Then
$0 \leq x^2 < 1$.
We have seen before that
\begin{equation*}
\abs{x^{2n} - 0} = {(x^2)}^n \to 0 \quad \text{as} \quad n \to \infty .
\end{equation*}
Therefore, $\lim_{n\to\infty}f_n(x) = 0$.
When $x = 1$ or $x=-1$, then $x^{2n} = 1$ for all $n$ and hence
$\lim_{n\to\infty}f_n(x) = 1$.
For all other $x$, the sequence
$\bigl\{ f_n(x) \bigr\}_{n=1}^\infty$ does not converge.
\end{example}
Often, functions are given as a series. In this case, we use
the notion of pointwise convergence to find the values of the function.
\begin{example} \label{example:geomsumptconv}
We write
\begin{equation*}
\sum_{k=0}^\infty x^k
\end{equation*}
to denote the limit of the functions
\begin{equation*}
f_n(x) \coloneqq \sum_{k=0}^n x^k .
\end{equation*}
When studying series,
we saw that for $(-1,1)$ the $f_n$ converge pointwise to
\begin{equation*}
\frac{1}{1-x} .
\end{equation*}
The subtle point here is that while
$\frac{1}{1-x}$ is defined for all $x \not=1$, and $f_n$ are
defined for all $x$ (even at $x=1$), convergence only happens on $(-1,1)$.
Therefore, when we write
\begin{equation*}
f(x) \coloneqq \sum_{k=0}^\infty x^k
\end{equation*}
we mean that $f$ is defined on $(-1,1)$ and is the pointwise limit
of the partial sums.
\end{example}
\begin{example}
Let $f_n(x) \coloneqq \sin(nx)$. Then $f_n$ does not converge pointwise
to any function on any interval. It may converge at certain points, such
as when $x=0$ or $x=\pi$. It is left as an exercise that in any interval
$[a,b]$, there exists an $x$ such that $\sin(xn)$ does not have a limit
as $n$ goes to infinity. See \figureref{fig:nonconvsinxn}.
\begin{myfigureht}
\includegraphics{figures/nonconvsinxn}
\caption{Graphs of $\sin(nx)$ for
$n=1,2,\ldots,10$, with higher $n$ in lighter gray.%
\label{fig:nonconvsinxn}}
\end{myfigureht}
\end{example}
Before we move to uniform convergence, let us reformulate pointwise
convergence in a different way.
We leave the proof to the reader---it is a simple application of the
definition of convergence of a sequence of real numbers.
\begin{prop} \label{ptwsconv:prop}
Let $f_n \colon S \to \R$ and $f \colon S \to \R$ be functions.
Then $\{ f_n \}_{n=1}^\infty$ converges pointwise to $f$ if and only if
for every $x \in S$ and every $\epsilon > 0$, there exists
an $N \in \N$ such that
\begin{equation*}
\abs{f_n(x)-f(x)} < \epsilon \quad \text{for all } n \geq N .
\end{equation*}
\end{prop}
The key point is that $N$ can depend on $x$, not just on
$\epsilon$. For each $x$, we can pick a different $N$.
If we could pick one $N$ for all $x$, we would have what is called
uniform convergence.
\subsection{Uniform convergence}
\begin{defn}
\index{uniform convergence}
Let $f_n \colon S \to \R$
and $f \colon S \to \R$
be functions. The sequence $\{ f_n \}_{n=1}^\infty$
\emph{\myindex{converges uniformly}} to $f$ if for
every $\epsilon > 0$, there exists an $N \in \N$ such that
for all $n \geq N$,
\begin{equation*}
\abs{f_n(x) - f(x)} < \epsilon \qquad \text{for all } x \in S.
\end{equation*}
\end{defn}
\begin{myfigureht}
\includegraphics{figures/uniformconv}
\caption{In uniform convergence,
for $n \geq N$,
the functions $f_n$ are within a strip of $\pm\epsilon$ from $f$.%
\label{fig:uniformconv}}
\end{myfigureht}
In uniform convergence, $N$ cannot depend on $x$. Given $\epsilon > 0$,
we must find an $N$ that works for all $x \in S$. See
\figureref{fig:uniformconv} for an illustration.
Uniform convergence
implies pointwise convergence, and the proof follows by
\propref{ptwsconv:prop}:
\begin{prop}
Let $\{ f_n \}_{n=1}^\infty$ be a sequence of functions $f_n \colon S \to \R$.
If $\{ f_n \}_{n=1}^\infty$ converges
uniformly to $f \colon S \to \R$, then $\{ f_n \}_{n=1}^\infty$ converges pointwise to $f$.
\end{prop}
The converse does not hold.
\begin{example}
The functions $f_n(x) \coloneqq x^{2n}$ do not converge uniformly on $[-1,1]$,
even though they converge pointwise. To see this, suppose for contradiction
that the convergence is uniform. For $\epsilon \coloneqq \nicefrac{1}{2}$, there would have
to exist an $N$ such that $x^{2N} = \abs{x^{2N} - 0} < \nicefrac{1}{2}$ for all $x \in
(-1,1)$ (as $f_n(x)$ converges to 0 on $(-1,1)$). But that means that
for every sequence $\{ x_k \}_{k=1}^\infty$ in $(-1,1)$ such that $\lim_{k\to\infty} x_k = 1$,
we have $x_k^{2N} < \nicefrac{1}{2}$ for all $k$. On the other hand,
$x^{2N}$ is a continuous function of $x$ (it is a polynomial). Therefore,
we obtain a contradiction
\begin{equation*}
1 = 1^{2N} = \lim_{k\to\infty} x_k^{2N} \leq \nicefrac{1}{2} .
\end{equation*}
However, if we restrict our domain to $[-a,a]$ where $0 < a < 1$, then
$\{ f_n \}_{n=1}^\infty$ converges uniformly to 0 on $[-a,a]$. Note that
$a^{2n} \to 0$ as $n \to \infty$. Given $\epsilon > 0$,
pick $N \in \N$ such that
$a^{2n} < \epsilon$ for all $n \geq N$.
If $x \in [-a,a]$, then
$\abs{x} \leq a$. So
for all $n \geq N$ and all $x \in [-a,a]$,
\begin{equation*}
\abs{x^{2n}} = \abs{x}^{2n} \leq a^{2n} < \epsilon .
\end{equation*}
\end{example}
\subsection{Convergence in uniform norm}
For bounded functions, there is another more abstract way to
think of uniform convergence. To every bounded function we assign
a certain nonnegative number that
measures the \myquote{distance} of the function from the constant
function $0$.
This number allows us to
\myquote{measure}
how far two functions are from each other. We then translate
a statement about uniform convergence into a statement about a certain
sequence of real numbers converging to zero.
\begin{defn} \label{def:unifnorm}
Let $f \colon S \to \R$ be a bounded function. Define
\glsadd{not:uniformnorm}
\begin{equation*}
\snorm{f}_S \coloneqq
\sup \bigl\{ \abs{f(x)} : x \in S \bigr\} .
\avoidbreak
\end{equation*}
We call $\snorm{\cdot}_S$ the \emph{\myindex{uniform norm}}.
Sometimes other notation\footnote{The notation nor terminology
is not completely standardized. The norm is also called the
\emph{\myindex{sup norm}} or
\emph{\myindex{infinity norm}}, and in addition
to $\snorm{f}_u$ and $\snorm{f}_S$ it is sometimes written
as $\snorm{f}_{\infty}$ or $\snorm{f}_{\infty,S}$.}
is used, such as $\snorm{f}_u$.
\end{defn}
The subscript is the set over which the supremum is taken. So if $K \subset S$
then
\begin{equation*}
\snorm{f}_K =
\sup \bigl\{ \abs{f(x)} : x \in K \bigr\} .
\end{equation*}
\begin{prop}
A sequence of bounded functions $f_n \colon S \to \R$ converges
uniformly to $f \colon S \to \R$ if and only if
\begin{equation*}
\lim_{n\to\infty} \snorm{f_n - f}_S = 0 .
\end{equation*}
\end{prop}
\begin{proof}
First suppose
$\lim_{n\to\infty} \norm{f_n - f}_S = 0$. Let $\epsilon > 0$ be
given. There exists an $N$ such that
for $n \geq N$, we have $\snorm{f_n - f}_S < \epsilon$. As $\norm{f_n-f}_S$
is the supremum of $\abs{f_n(x)-f(x)}$, we see that for all $x \in S$,
we have $\abs{f_n(x)-f(x)} \leq \snorm{f_n - f}_S < \epsilon$.
On the other hand, suppose $\{ f_n \}_{n=1}^\infty$ converges uniformly to $f$.
Let $\epsilon > 0$ be given. Then find $N$ such that
for all $n \geq N$, we have
$\abs{f_n(x)-f(x)} < \epsilon$ for all $x \in S$.
Taking the supremum over $x \in S$, we see that
$\snorm{f_n - f}_S \leq \epsilon$. Hence $\lim_{n\to\infty} \snorm{f_n-f}_S = 0$.
\end{proof}
Sometimes it is said that
\emph{$\{ f_n \}_{n=1}^\infty$ converges to $f$ in uniform norm}%
\index{converges in uniform norm}\index{uniform norm convergence}
instead of \emph{converges uniformly} if $\snorm{f_n-f}_S \to 0$. The proposition
says that the two notions are the same thing for bounded functions.
\begin{example}
Let $f_n \colon [0,1] \to \R$ be defined by $f_n(x) \coloneqq \frac{nx+ \sin(nx^2)}{n}$.
We claim $\{ f_n \}_{n=1}^\infty$ converges uniformly to $f(x) \coloneqq x$. Let us compute:
\begin{equation*}
\begin{split}
\norm{f_n-f}_{[0,1]}
& =
\sup \left\{ \abs{\frac{nx+ \sin(nx^2)}{n} - x} : x \in [0,1] \right\}
\\
& =
\sup \left\{ \frac{\abs{\sin(nx^2)}}{n} : x \in [0,1] \right\}
\\
& \leq
\sup \bigl\{ \nicefrac{1}{n} : x \in [0,1] \bigr\}
\\
& = \nicefrac{1}{n}.
\end{split}
\end{equation*}
\end{example}
Using the uniform norm, we define Cauchy sequences in a similar way
as we define Cauchy sequences of real numbers.
\begin{defn}
Let $f_n \colon S \to \R$ be bounded functions.
The sequence is \emph{\myindex{Cauchy in the uniform norm}}
or \emph{\myindex{uniformly Cauchy}}
if for every $\epsilon > 0$, there exists an $N \in \N$ such
that for all $m,k \geq N$,
\begin{equation*}
\norm{f_m-f_k}_S < \epsilon .
\end{equation*}
\end{defn}
\begin{prop} \label{prop:uniformcauchy}
Let $f_n \colon S \to \R$ be bounded functions.
Then $\{ f_n \}_{n=1}^\infty$ is Cauchy in the uniform norm if and only if
there exists an $f \colon S \to \R$ and $\{ f_n \}_{n=1}^\infty$ converges
uniformly to $f$.
\end{prop}
\begin{proof}
First suppose $\{ f_n \}_{n=1}^\infty$ is Cauchy in the uniform norm.
Let us define $f$. Fix $x$.
The sequence $\bigl\{ f_n(x) \bigr\}_{n=1}^\infty$ is Cauchy because
\begin{equation*}
\abs{f_m(x)-f_k(x)}
\leq
\norm{f_m-f_k}_S .
\end{equation*}
Thus $\bigl\{ f_n(x) \bigr\}_{n=1}^\infty$ converges to some real number. Define $f \colon S
\to \R$ by
\begin{equation*}
f(x) \coloneqq \lim_{n \to \infty} f_n(x) .
\end{equation*}
The sequence
$\{ f_n \}_{n=1}^\infty$ converges pointwise to $f$. To show that the convergence
is uniform, let $\epsilon > 0$ be given. Find an $N$ such that
for all $m, k \geq N$, we have
$\norm{f_m-f_k}_S < \nicefrac{\epsilon}{2}$. In other words, for
all $x$, we have
$\abs{f_m(x)-f_k(x)} < \nicefrac{\epsilon}{2}$. For any fixed $x$, take the limit
as $k$ goes to infinity. Then $\abs{f_m(x)-f_k(x)}$
goes to $\abs{f_m(x)-f(x)}$.
Consequently for all $x$,
\begin{equation*}
\abs{f_m(x)-f(x)} \leq \nicefrac{\epsilon}{2} < \epsilon .
\end{equation*}
Hence, $\{ f_n \}_{n=1}^\infty$ converges uniformly.
Next, we prove the other direction.
Suppose $\{ f_n \}_{n=1}^\infty$ converges uniformly to
$f$. Given $\epsilon > 0$, find $N$ such that for all $n \geq N$,
we have $\abs{f_n(x)-f(x)} < \nicefrac{\epsilon}{4}$ for all $x \in S$.
Therefore, for all $m, k \geq N$ and all $x$,
\begin{multline*}
\abs{f_m(x)-f_k(x)} =
\abs{f_m(x)-f(x)+f(x)-f_k(x)}
\\
\leq
\abs{f_m(x)-f(x)}+\abs{f(x)-f_k(x)} < \nicefrac{\epsilon}{4} +
\nicefrac{\epsilon}{4} = \nicefrac{\epsilon}{2} .
\end{multline*}
Take the supremum over all $x$ to obtain
\begin{equation*}
\norm{f_m-f_k}_S \leq \nicefrac{\epsilon}{2} < \epsilon . \qedhere
\end{equation*}
\end{proof}
\subsection{Exercises}
\begin{exercise}
Let $f$ and $g$ be bounded functions on $[a,b]$. Prove
\begin{equation*}
\norm{f+g}_{[a,b]} \leq \norm{f}_{[a,b]} + \norm{g}_{[a,b]} .
\end{equation*}
\end{exercise}
\begin{exercise}
\leavevmode
\begin{enumerate}[a)]
\item
Find the pointwise limit $\dfrac{e^{x/n}}{n}$ for $x \in \R$.
\item
Is the limit uniform on $\R$?
\item
Is the limit uniform on $[0,1]$?
\end{enumerate}
\end{exercise}
\begin{exercise}
Suppose $f_n \colon S \to \R$ are functions that converge uniformly
to $f \colon S \to \R$. Suppose $A \subset S$. Show that
the sequence of restrictions $\{ f_n|_A \}_{n=1}^\infty$ converges uniformly to $f|_A$.
\end{exercise}
\begin{exercise}
Suppose $\{ f_n \}_{n=1}^\infty$ and $\{ g_n \}_{n=1}^\infty$ defined on some set $A$ converge to
$f$ and $g$ respectively pointwise. Show that $\{ f_n+g_n \}_{n=1}^\infty$ converges
pointwise to $f+g$.
\end{exercise}
\begin{exercise}
Suppose $\{ f_n \}_{n=1}^\infty$ and $\{ g_n \}_{n=1}^\infty$ defined on some set $A$ converge to
$f$ and $g$ respectively uniformly on $A$.
Show that $\{ f_n+g_n \}_{n=1}^\infty$
converges uniformly to $f+g$ on $A$.
\end{exercise}
\begin{exercise}
Find an example of a sequence of functions $\{ f_n \}_{n=1}^\infty$ and $\{
g_n \}_{n=1}^\infty$
that converge uniformly to some $f$ and $g$ on some set $A$, but such that
$\{ f_ng_n \}_{n=1}^\infty$ (the multiple) does not converge uniformly to $fg$ on $A$.
Hint: Let $A \coloneqq \R$, let $f(x)\coloneqq g(x) \coloneqq x$. You can even pick $f_n = g_n$.
\end{exercise}
\begin{exercise}
Suppose there exists a sequence of functions $\{ g_n \}_{n=1}^\infty$ uniformly
converging to $0$ on $A$. Now suppose we have a sequence of functions
$\{ f_n \}_{n=1}^\infty$ and a function $f$ on $A$ such that
\begin{equation*}
\abs{f_n(x) - f(x)} \leq g_n(x)
\end{equation*}
for all $x \in A$. Show that $\{ f_n \}_{n=1}^\infty$ converges uniformly to $f$ on $A$.
\end{exercise}
\begin{exercise}
Let $\{ f_n \}_{n=1}^\infty$, $\{ g_n \}_{n=1}^\infty$ and
$\{ h_n \}_{n=1}^\infty$ be sequences of functions on
$[a,b]$. Suppose $\{ f_n \}_{n=1}^\infty$ and $\{ h_n \}_{n=1}^\infty$ converge uniformly to some function
$f \colon [a,b] \to \R$ and suppose $f_n(x) \leq g_n(x) \leq h_n(x)$
for all $x \in [a,b]$. Show that $\{ g_n \}_{n=1}^\infty$ converges uniformly to $f$.
\end{exercise}
\begin{exercise}
Let $f_n \colon [0,1] \to \R$ be a sequence of increasing functions (that
is, $f_n(x) \geq f_n(y)$ whenever $x \geq y$). Suppose $f_n(0) = 0$
and $\lim\limits_{n \to \infty} f_n(1) = 0$. Show that
$\{ f_n \}_{n=1}^\infty$
converges uniformly to $0$.
\end{exercise}
\begin{exercise}
Consider a sequence of functions $f_n \colon [0,1] \to \R$ so that there
is a sequence of distinct numbers $x_n \in [0,1]$ such that
for all $n$,
\begin{equation*}
f_n(x_n) = 1.
\end{equation*}
Prove or disprove the following statements:
\begin{enumerate}[a)]
\item
True or false: There exists $\{ f_n \}_{n=1}^\infty$ as above that
converges pointwise to $0$.
\item
True or false: There exists $\{ f_n \}_{n=1}^\infty$ as above that
converges uniformly to $0$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Fix a continuous $h \colon [a,b] \to \R$.
Let $f(x) \coloneqq h(x)$ for $x \in [a,b]$,
$f(x) \coloneqq h(a)$ for $x < a$ and $f(x) \coloneqq h(b)$ for all $x > b$. First show
that $f \colon \R \to \R$ is continuous.
Now let $f_n$ be
the function $g$ from \exerciseref{exercise:smoothingout} with
$\epsilon = \nicefrac{1}{n}$, defined on the interval $[a,b]$. That is,
\begin{equation*}
f_n(x) \coloneqq \frac{n}{2} \int_{x-1/n}^{x+1/n} f .
\end{equation*}
Show that $\{ f_n \}_{n=1}^\infty$ converges uniformly to $h$ on $[a,b]$.
\end{exercise}
\begin{exercise}
Prove that
if a sequence of functions $f_n \colon S \to \R$
converge uniformly to a bounded function $f \colon S \to \R$,
then there exists an $N$ such that for all $n \geq N$, the $f_n$
are bounded.
\end{exercise}
\begin{exercise}
Suppose there is a single constant $B$ and
a sequence of functions
$f_n \colon S \to \R$ that are bounded by $B$,
that is $\abs{f_n(x)} \leq B$ for all $x \in S$.
Suppose that $\{ f_n \}_{n=1}^\infty$ converges pointwise
to $f \colon S \to \R$.
Prove that $f$ is bounded.
\end{exercise}
\begin{exercise}[requires \sectionref{sec:moreonseries}]
In \exampleref{example:geomsumptconv} we saw
$\sum_{k=0}^\infty x^k$ converges pointwise to $\frac{1}{1-x}$ on
$(-1,1)$.
\begin{enumerate}[a)]
\item
Show that whenever $0 \leq c < 1$, the series
$\sum_{k=0}^\infty x^k$ converges uniformly on $[-c,c]$.
\item
Show that the series $\sum_{k=0}^\infty x^k$ does not converge uniformly
on $(-1,1)$.
\end{enumerate}
\end{exercise}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\sectionnewpage
\section{Interchange of limits}
\label{sec:liminter}
%mbxINTROSUBSECTION
\sectionnotes{1--2.5 lectures,
subsections on derivatives and power series (which
requires \sectionref{sec:moreonseries}) optional.}
Large parts of modern analysis deal mainly with the question of the
interchange of two limiting operations. When
we have a chain of two limits, we cannot always just swap the limits.
For instance,
\begin{equation*}
0 =
\lim_{n\to\infty}
\left(
\lim_{k\to\infty}
\frac{n}{n + k}
\right)
\not=
\lim_{k\to\infty}
\left(
\lim_{n\to\infty}
\frac{n}{n + k}
\right)
= 1 .
\end{equation*}
When talking about sequences of functions, interchange of limits comes up
quite often. We look at several instances: continuity of the limit, the
integral of the limit, the derivative of the limit, and the convergence of
power series.
\subsection{Continuity of the limit}
If we have a sequence $\{ f_n \}_{n=1}^\infty$ of continuous functions, is the limit continuous?
Suppose $f$ is the (pointwise) limit of $\{ f_n \}_{n=1}^\infty$.
If $\lim_{k\to\infty} x_k = x$,
we are interested in the following
interchange of limits, where the equality to prove
is marked with a question mark. Equality is not always true, in fact, the limits to the left
of the question mark might not even exist.
\begin{equation*}
\lim_{k \to \infty}
f(x_k)
=
\lim_{k \to \infty}
\Bigl(
\lim_{n \to \infty} f_n(x_k)
\Bigr)
\overset{?}{=}
\lim_{n \to \infty}
\Bigl(
\lim_{k \to \infty}
f_n(x_k)
\Bigr)
=
\lim_{n \to \infty}
f_n(x)
=
f(x) .
\end{equation*}
We wish to find conditions on the sequence $\{ f_n \}_{n=1}^\infty$
so that the equation above holds.
If we only require pointwise convergence, then the limit
of a sequence of functions need not be continuous, and the equation above
need not hold.
\begin{example}
Define $f_n \colon [0,1] \to \R$ as
\begin{equation*}
f_n(x) \coloneqq
\begin{cases}
1-nx & \text{if } x < \nicefrac{1}{n},\\
0 & \text{if } x \geq \nicefrac{1}{n}.
\end{cases}
\end{equation*}
See \figureref{contconvcntr:fig}.
\begin{myfigureht}
\includegraphics{figures/contconvcntr}
\caption{Graph of $f_n(x)$.%
\label{contconvcntr:fig}}
\end{myfigureht}
Each function $f_n$ is continuous.
Fix an $x \in (0,1]$. If $n \geq \nicefrac{1}{x}$,
then $x \geq \nicefrac{1}{n}$. Therefore for $n \geq \nicefrac{1}{x}$,
we have $f_n(x) = 0$, and so
\begin{equation*}
\lim_{n \to \infty} f_n(x) = 0.
\end{equation*}
On the other hand, if $x=0$, then
\begin{equation*}
\lim_{n \to \infty} f_n(0) =
\lim_{n \to \infty} 1 = 1.
\end{equation*}
Thus the pointwise limit of $f_n$ is the function
$f \colon [0,1] \to \R$ defined by
\begin{equation*}
f(x) \coloneqq
\begin{cases}
1 & \text{if } x = 0,\\
0 & \text{if } x > 0.
\end{cases}
\end{equation*}
The function $f$ is not continuous at 0.
\end{example}
If we, however, require the convergence to be uniform, the limits can
be interchanged.
\begin{thm}
Suppose $S \subset \R$.
Let $\{ f_n \}_{n=1}^\infty$ be
a sequence of continuous functions $f_n \colon S \to \R$ converging
uniformly to $f \colon S \to \R$. Then $f$ is continuous.
\end{thm}
\begin{proof}
Let $x \in S$ be fixed. Let $\{ x_n \}_{n=1}^\infty$ be a sequence in $S$
converging to $x$.
Let $\epsilon > 0$ be given.
As $\{ f_k \}_{k=1}^\infty$ converges uniformly to $f$, we find a $k \in \N$ such that
\begin{equation*}
\abs{f_k(y)-f(y)} < \nicefrac{\epsilon}{3}
\end{equation*}
for all $y \in S$. As $f_k$ is continuous at $x$,
we find an $N \in \N$ such that for all $m \geq N$,
\begin{equation*}
\abs{f_k(x_m)-f_k(x)} < \nicefrac{\epsilon}{3} .
\end{equation*}
Thus for all
$m \geq N$,
\begin{equation*}
\begin{split}
\abs{f(x_m)-f(x)}
& =
\abs{f(x_m)-f_k(x_m)+f_k(x_m)-f_k(x)+f_k(x)-f(x)}
\\
& \leq
\abs{f(x_m)-f_k(x_m)}+
\abs{f_k(x_m)-f_k(x)}+
\abs{f_k(x)-f(x)}
\\
& <
\nicefrac{\epsilon}{3} +
\nicefrac{\epsilon}{3} +
\nicefrac{\epsilon}{3} = \epsilon .
\end{split}
\end{equation*}
Therefore, $\bigl\{ f(x_m) \bigr\}_{m=1}^\infty$ converges to $f(x)$,
and consequently $f$ is continuous at $x$.
As $x$ was arbitrary, $f$ is continuous everywhere.
\end{proof}
\subsection{Integral of the limit}
Again, if we simply require pointwise convergence, then the integral
of a limit of a sequence of functions need not be equal to the limit
of the integrals.
\begin{example}
Define $f_n \colon [0,1] \to \R$ as
\begin{equation*}
f_n(x) \coloneqq
\begin{cases}
0 & \text{if } x = 0,\\
n-n^2x & \text{if } 0 < x < \nicefrac{1}{n},\\
0 & \text{if } x \geq \nicefrac{1}{n}.
\end{cases}
\avoidbreak
\end{equation*}
See \figureref{intconvcntr:fig}.
\begin{myfigureht}
\includegraphics{figures/intconvcntr}
\caption{Graph of $f_n(x)$.%
\label{intconvcntr:fig}}
\end{myfigureht}
Each $f_n$ is Riemann integrable (it is continuous on $(0,1]$ and bounded),
and the fundamental theorem of calculus says that
\begin{equation*}
\int_0^1 f_n =
\int_0^{\nicefrac{1}{n}} (n-n^2x)\,dx = \nicefrac{1}{2} .
\end{equation*}
Let us compute the pointwise limit of $\{ f_n \}_{n=1}^\infty$.
Fix an $x \in (0,1]$. For $n \geq \nicefrac{1}{x}$,
we have $x \geq \nicefrac{1}{n}$ and so $f_n(x) = 0$. Hence,
\begin{equation*}
\lim_{n \to \infty} f_n(x) = 0.
\end{equation*}
We also have $f_n(0) = 0$ for all $n$. So the pointwise
limit of $\{ f_n \}_{n=1}^\infty$ is the zero function.
In summary,
\begin{equation*}
\nicefrac{1}{2} =
\lim_{n\to\infty}
\int_0^1 f_n (x)\,dx
\not=
\int_0^1
\left(
\lim_{n\to\infty}
f_n(x)\right)\,dx
=
\int_0^1 0\,dx = 0 .
\end{equation*}
\end{example}
But if we require the convergence to be uniform, the limits can
be interchanged.\footnote{Weaker conditions
are sufficient for this kind of theorem, but to prove such a generalization requires
more sophisticated machinery than we cover here: the Lebesgue integral.
In particular, the theorem holds with pointwise
convergence as long as $f$ is integrable and there is an $M$ such that
$\snorm{f_n}_{[a,b]} \leq M$ for all $n$.}
\begin{thm} \label{integralinterchange:thm}
Let $\{ f_n \}_{n=1}^\infty$ be a sequence of Riemann integrable
functions
$f_n \colon [a,b] \to \R$
converging uniformly to $f \colon [a,b]
\to \R$. Then $f$ is Riemann integrable, and
\begin{equation*}
\int_a^b f = \lim_{n\to\infty} \int_a^b f_n .
\end{equation*}
\end{thm}
\begin{proof}
Let $\epsilon > 0$ be given.
As $f_n$ goes to $f$ uniformly, we find an $M \in \N$ such that
for all $n \geq M$, we have
$\abs{f_n(x)-f(x)} < \frac{\epsilon}{2(b-a)}$ for all $x \in [a,b]$.
In particular, by reverse triangle inequality,
$\abs{f(x)} < \frac{\epsilon}{2(b-a)} + \abs{f_n(x)}$ for all $x$.
Hence $f$ is bounded,
as $f_n$ is bounded.
Note that $f_n$ is integrable and compute
\begin{equation*}
\begin{split}
\overline{\int_a^b} f
-
\underline{\int_a^b} f
& =
\overline{\int_a^b} \bigl( f(x) - f_n(x) + f_n(x) \bigr)\,dx
-
\underline{\int_a^b} \bigl( f(x) - f_n(x) + f_n(x) \bigr)\,dx
\\
& \leq
\overline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx + \overline{\int_a^b} f_n(x) \,dx
-
\underline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx - \underline{\int_a^b} f_n(x) \,dx
\\
& =
\overline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx + \int_a^b f_n(x) \,dx
-
\underline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx - \int_a^b f_n(x) \,dx
\\
& =
\overline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx
-
\underline{\int_a^b} \bigl( f(x) - f_n(x) \bigr)\,dx
\\
& \leq
\frac{\epsilon}{2(b-a)} (b-a) +
\frac{\epsilon}{2(b-a)} (b-a) = \epsilon .
\end{split}
\end{equation*}
The first inequality is \propref{prop:upperlowerlinineq}.
The second inequality follows by \propref{intulbound:prop} and
the fact that for all $x \in [a,b]$, we have
$\frac{-\epsilon}{2(b-a)} < f(x)-f_n(x) < \frac{\epsilon}{2(b-a)}$.
As $\epsilon > 0$ was arbitrary, $f$ is Riemann integrable.
Finally, we compute $\int_a^b f$. We apply \propref{intbound:prop}
in the calculation. Again, for all $n \geq M$ (where $M$ is the same as above),
\begin{equation*}
\begin{split}
\abs{\int_a^b f - \int_a^b f_n} & =
\abs{ \int_a^b \bigl(f(x) - f_n(x)\bigr)\,dx}
\\
& \leq
\frac{\epsilon}{2(b-a)} (b-a) = \frac{\epsilon}{2} < \epsilon .
\end{split}
\end{equation*}
Therefore, $\bigl\{ \int_a^b f_n \bigr\}_{n=1}^\infty$ converges to $\int_a^b f$.
\end{proof}
\begin{example}
Suppose we wish to compute
\begin{equation*}
\lim_{n\to\infty} \int_0^1 \frac{nx+ \sin(nx^2)}{n} \,dx .
\end{equation*}
It is impossible to compute the integrals for any particular $n$ using
calculus as $\sin(nx^2)$ has no closed-form antiderivative. However,
we can compute the limit.
We have shown before that $\frac{nx+ \sin(nx^2)}{n}$ converges uniformly
on $[0,1]$ to $x$.
By \thmref{integralinterchange:thm}, the limit exists and
\begin{equation*}
\lim_{n\to\infty} \int_0^1 \frac{nx+ \sin(nx^2)}{n} \,dx
=
\int_0^1
x \,dx = \nicefrac{1}{2} .
\end{equation*}
\end{example}
\begin{example}
If convergence is only pointwise, the limit need not even be Riemann
integrable. On $[0,1]$ define
\begin{equation*}
f_n(x) \coloneqq
\begin{cases}
1 & \text{if } x = \nicefrac{p}{q} \text{ in lowest terms and } q \leq n, \\
0 & \text{otherwise.}
\end{cases}
\end{equation*}
Each function $f_n$ differs from the zero function at finitely many points;
there are only finitely many fractions in $[0,1]$ with denominator less than
or equal to $n$. So $f_n$ is integrable and $\int_0^1 f_n = \int_0^1 0 =
0$. It is an easy exercise to show that $\{ f_n \}_{n=1}^\infty$ converges pointwise to the
\myindex{Dirichlet function}
\begin{equation*}
f(x) \coloneqq
\begin{cases}
1 & \text{if } x \in \Q, \\
0 & \text{otherwise,}
\end{cases}
\end{equation*}
which is not Riemann integrable.
\end{example}
\begin{example}
In fact, if the convergence is only pointwise, the limit of bounded
functions is not even necessarily bounded.
Define $f_n \colon [0,1] \to \R$ by
\begin{equation*}
f_n(x) \coloneqq
\begin{cases}
0 & \text{if } x < \nicefrac{1}{n},\\
\nicefrac{1}{x} & \text{else.}
\end{cases}
\end{equation*}
For every $n$ we get that $\abs{f_n(x)} \leq n$ for all $x \in [0,1]$ so the
functions are bounded. However, $\{ f_n \}_{n=1}^\infty$ converges pointwise to
the unbounded function
\begin{equation*}
f(x) \coloneqq
\begin{cases}
0 & \text{if } x = 0,\\
\nicefrac{1}{x} & \text{else.}
\end{cases}
\end{equation*}
\end{example}
\subsection{Derivative of the limit}
While uniform convergence is enough to swap limits with integrals, it is not,
however, enough to swap limits with derivatives, unless you also have
uniform convergence of the derivatives themselves.
\begin{example}
Let $f_n(x) \coloneqq \frac{\sin(nx)}{n}$. Then $f_n$ converges uniformly to
0. See \figureref{fig:conv1nsinxn}.
The derivative of the limit is 0. But $f_n'(x) = \cos(nx)$, which
does not converge even pointwise, for
example $f_n'(\pi) = {(-1)}^n$. Moreover,
$f_n'(0) = 1$ for all $n$, which does converge, but not to $0$.
\begin{myfigureht}
\includegraphics{figures/conv1nsinxn}
\caption{Graphs of $\frac{\sin(nx)}{n}$ for
$n=1,2,\ldots,10$, with higher $n$ in lighter gray.%
\label{fig:conv1nsinxn}}
\end{myfigureht}
\end{example}
\begin{example} \label{exercise:badconvergenceder}
Let $f_n(x) \coloneqq \frac{1}{1+nx^2}$.
If $x \not= 0$, then $\lim_{n \to \infty} f_n(x) = 0$,
but $\lim_{n \to \infty} f_n(0) = 1$.
Hence, $\{ f_n \}_{n=1}^\infty$ converges pointwise to a function that is not continuous
at $0$.
We compute
\begin{equation*}
f_n'(x) %= \frac{d}{dx} \frac{1}{1+n x^2}
= \frac{-2 n x}{(1+ n x^2)^2} .
\end{equation*}
For every $x$, $\lim_{n\to\infty} f_n'(x) = 0$, so the derivatives
converge pointwise to 0,
but the reader can check that the convergence is not uniform on any
interval containing $0$.
The limit of $f_n$ is not differentiable at $0$---it is not even
continuous at $0$. See \figureref{fig:convder1over1pnxsq}.
\begin{myfigureht}
\includegraphics{figures/convder1over1pnxsq}
\caption{Graphs of $\frac{1}{1+nx^2}$ and its derivative
for $n=1,2,\ldots,10$, with higher $n$ in lighter gray.%
\label{fig:convder1over1pnxsq}}
\end{myfigureht}
\end{example}
See the exercises for more examples. Using
the fundamental theorem of calculus, we find an answer for continuously
differentiable functions. The following theorem is true even if
we do not assume continuity of the derivatives, but the proof is more
difficult.
\begin{thm} \label{thm:dersconverge}
Let $I$ be a bounded interval and let
$f_n \colon I \to \R$ be continuously differentiable functions.
Suppose $\{ f_n' \}_{n=1}^\infty$ converges uniformly to $g \colon I \to \R$,
and suppose $\bigl\{ f_n(c) \bigr\}_{n=1}^\infty$ is a
convergent sequence for some $c \in I$. Then $\{ f_n \}_{n=1}^\infty$ converges uniformly to
a continuously differentiable function $f \colon I \to \R$, and $f' = g$.
\end{thm}
\begin{proof}
Define $f(c) \coloneqq \lim_{n\to \infty} f_n(c)$.
As $f_n'$ are continuous and hence Riemann integrable,
then
via the fundamental theorem of calculus, we find that for $x \in I$,
\begin{equation*}
f_n(x) = f_n(c) + \int_c^x f_n' .
\end{equation*}
As $\{ f_n' \}_{n=1}^\infty$ converges uniformly on $I$, it converges uniformly
on $[c,x]$ (or $[x,c]$ if $x < c$).
Thus, the limit as $n \to \infty$ on the right-hand side exists.
Define $f$ at the remaining points (where $x\neq c$) by this limit:
\begin{equation*}
f(x) \coloneqq
\lim_{n\to\infty} f_n(c) + \lim_{n\to\infty} \int_c^x f_n'
=
f(c) + \int_c^x g .
\end{equation*}
The function $g$ is continuous, being the uniform limit of continuous
functions. Hence $f$ is differentiable and $f'(x) = g(x)$ for all $x \in I$
by the second form of the fundamental theorem.
It remains to prove
uniform convergence.
Suppose $I$ has a lower bound $a$ and upper bound $b$.
Let $\epsilon > 0$ be given. Take $M$
such that for all $n \geq M$, we have
$\abs{f(c)-f_n(c)} < \nicefrac{\epsilon}{2}$
and
$\abs{g(x)-f_n'(x)} < \frac{\epsilon}{2(b-a)}$
for all $x \in I$. Then
\begin{equation*}
\begin{split}
\abs{f(x) - f_n(x)} & =
\abs{\left(f(c) + \int_c^x g\right) - \left( f_n(c) + \int_c^x f_n' \right)}
\\
& \leq
\abs{f(c) - f_n(c)} + \abs{\int_c^x g - \int_c^x f_n'}
\\
& =
\abs{f(c) - f_n(c)} + \abs{\int_c^x \bigl(g(s) - f_n'(s)\bigr) \, ds}
\\
& <
\frac{\epsilon}{2}
+
\frac{\epsilon}{2(b-a)}
(b-a)
=\epsilon. \qedhere
\end{split}
\end{equation*}
\end{proof}
The proof goes through without boundedness of $I$, except for the
uniform convergence of $f_n$ to $f$. As an example suppose $I = \R$ and let
$f_n(x) \coloneqq \nicefrac{x}{n}$. Then $f_n'(x)=\nicefrac{1}{n}$, which
converges uniformly to $0$. However, $\{f_n\}_{n=1}^\infty$ converges to 0 only pointwise.
\subsection{Convergence of power series}
In \sectionref{sec:moreonseries} we saw that a power series converges
absolutely inside its radius of convergence, so it converges pointwise.
Let us show that it (and all its derivatives) also converges uniformly.
This fact allows us to
swap several types of limits. Not only is the limit continuous,
we can
integrate and even differentiate convergent power series term by term.
\begin{prop}
Let $\sum_{n=0}^\infty c_n {(x-a)}^n$ be a convergent power series with a radius
of convergence $\rho$, where $0 < \rho \leq \infty$.
Then the series converges uniformly