We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,很感谢您的代码。我有一个问题想请教,由于我的机器运行vec.py代码时候内存不够大,因此导致了无法将所有的训练数据保存到dataset.pkl中,因此我适当的减小了训练数据集后将vec.py运行通过。之后直接利用30000.ckpt进行预测,可是在saver.restore(sess, '/home/weihua/git/tensorflow/faceID/DeepID1-master/checkpoint/30000.ckpt')这一步总是报错,请问是不是因为恢复的深度模型中的数据必须是与完整的数据集匹配对应上才能进行预测呢? 其中的一部分可能有关的报错为: InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [1273] rhs shape= [1283] [[Node: save/Assign_11 = Assign[T=DT_FLOAT, _class=["loc:@loss/nn_layer/biases/Variable"], use_locking=true, validate_shape=true,...... 非常感谢
The text was updated successfully, but these errors were encountered:
No branches or pull requests
您好,很感谢您的代码。我有一个问题想请教,由于我的机器运行vec.py代码时候内存不够大,因此导致了无法将所有的训练数据保存到dataset.pkl中,因此我适当的减小了训练数据集后将vec.py运行通过。之后直接利用30000.ckpt进行预测,可是在saver.restore(sess, '/home/weihua/git/tensorflow/faceID/DeepID1-master/checkpoint/30000.ckpt')这一步总是报错,请问是不是因为恢复的深度模型中的数据必须是与完整的数据集匹配对应上才能进行预测呢?
其中的一部分可能有关的报错为:
InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [1273] rhs shape= [1283] [[Node: save/Assign_11 = Assign[T=DT_FLOAT, _class=["loc:@loss/nn_layer/biases/Variable"], use_locking=true, validate_shape=true,......
非常感谢
The text was updated successfully, but these errors were encountered: