Skip to content

Latest commit

 

History

History
64 lines (49 loc) · 1.92 KB

README.md

File metadata and controls

64 lines (49 loc) · 1.92 KB

Towards robust facial action units detection

Overview of AU-Net

Paper

A simple yet strong baseline for facial AU detection:

  • Extract basic AU features from a pretrained face alignment model
  • Instantiate TDN to model temporal dynamics on static AU features
  • Use VAE module to regulate the initial prediction

Requirements

  • Python 3
  • PyTorch

Data and Data Prepareing Tools

We use RetinaFace to do face detection:

Training and Testing

  • train the VAE module on BP4D split 1, run:
python train_vae.py --data BP4D --subset 1 --weight 0.3 
  • train the AU-Net, run:
python train_video_vae.py --data BP4D --vae 'pretrained vae model'
  • Pretrained models Test
BP4D Average F1-score(%)
bp4d_split* 65.0
DISFA Average F1-score(%)
disfa_split* 66.1
  • Demo to predict 15 AUs Demo

Citation

@article{yang2023toward,
  title={Toward Robust Facial Action Units’ Detection},
  author={Yang, Jing and Hristov, Yordan and Shen, Jie and Lin, Yiming and Pantic, Maja},
  journal={Proceedings of the IEEE},
  year={2023},
  publisher={IEEE}
}

Acknowledgements

This repo is built using components from JAANet and EmoNet

License

This project is licensed under the MIT License