-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSecant Payton
53 lines (40 loc) · 1.17 KB
/
Secant Payton
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Defining Function
def f(x):
return x**3 - 5*x - 9
# Implementing Secant Method
def secant(x0,x1,e,N):
print('\n\n*** SECANT METHOD IMPLEMENTATION ***')
step = 1
condition = True
while condition:
if f(x0) == f(x1):
print('Divide by zero error!')
break
x2 = x0 - (x1-x0)*f(x0)/( f(x1) - f(x0) )
print('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step, x2, f(x2)))
x0 = x1
x1 = x2
step = step + 1
if step > N:
print('Not Convergent!')
break
condition = abs(f(x2)) > e
print('\n Required root is: %0.8f' % x2)
# Input Section
x0 = input('Enter First Guess: ')
x1 = input('Enter Second Guess: ')
e = input('Tolerable Error: ')
N = input('Maximum Step: ')
# Converting x0 and e to float
x0 = float(x0)
x1 = float(x1)
e = float(e)
# Converting N to integer
N = int(N)
#Note: You can combine above three section like this
# x0 = float(input('Enter First Guess: '))
# x1 = float(input('Enter Second Guess: '))
# e = float(input('Tolerable Error: '))
# N = int(input('Maximum Step: '))
# Starting Secant Method
secant(x0,x1,e,N)