From b09a888ad9ecfbfe9d550c5a898a4a143f5d32cc Mon Sep 17 00:00:00 2001 From: jimy-byerley Date: Mon, 15 Mar 2021 17:40:09 +0100 Subject: [PATCH] updated markdown to format code as python --- README.md | 85 +++++++++++++++++++++++++++---------------------------- 1 file changed, 42 insertions(+), 43 deletions(-) diff --git a/README.md b/README.md index 4786633..bdc576b 100644 --- a/README.md +++ b/README.md @@ -8,27 +8,27 @@ The elements must be extension-types (eg. class created in compiled modules) and ### basic usage: ```python - >>> from arrex import * - >>> a = typedlist([ - myclass(...), - myclass(...), - ], dtype=myclass) - >>> a[0] - myclass(...) +>>> from arrex import * +>>> a = typedlist([ + myclass(...), + myclass(...), + ], dtype=myclass) +>>> a[0] +myclass(...) ``` in that example, `myclass` can be a primitive numpy type, like `np.float64` ```python - >>> import typedlist.numpy # this is enabling numpy dtypes for arrex - >>> typedlist(dtype=np.float64) +>>> import typedlist.numpy # this is enabling numpy dtypes for arrex +>>> typedlist(dtype=np.float64) ``` it can be a more complex type, from module `pyglm` for instance ```python - >>> import typedlist.glm # this is enabling glm dtypes for arrex - >>> typedlist(dtype=glm.vec4) +>>> import typedlist.glm # this is enabling glm dtypes for arrex +>>> typedlist(dtype=glm.vec4) ``` @@ -37,36 +37,36 @@ it can be a more complex type, from module `pyglm` for instance ### Use it as a list: ```python - >>> a = typedlist(dtype=vec3) - - # build from an iterable - >>> a = typedlist([], dtype=vec3) - - # append some data - >>> a.append(vec3(1,2,3)) - - # extend with an iterable - >>> a.extend(vec3(i) for i in range(5)) - - >>> len(a) # the current number of elements - 6 - - >>> a.owner # the current data buffer - b'.........' +>>> a = typedlist(dtype=vec3) + +# build from an iterable +>>> a = typedlist([], dtype=vec3) + +# append some data +>>> a.append(vec3(1,2,3)) + +# extend with an iterable +>>> a.extend(vec3(i) for i in range(5)) + +>>> len(a) # the current number of elements +6 + +>>> a.owner # the current data buffer +b'.........' ``` ### Use it as a slice: ```python - >>> myslice = a[:5] # no data is copied - typedlist(....) +>>> myslice = a[:5] # no data is copied +typedlist(....) ``` ### Use it as a view on top of a random buffer ```python - >>> a = np.ones((6,3), dtype='f4') - >>> myslice = typedlist(a, dtype=vec3) +>>> a = np.ones((6,3), dtype='f4') +>>> myslice = typedlist(a, dtype=vec3) ``` ### buffer protocol @@ -74,7 +74,7 @@ it can be a more complex type, from module `pyglm` for instance It does support the buffer protocol, so it can be converted in a great variety of well known arrays, even without any copy ```python - >>> np.array(typedlist([....])) +>>> np.array(typedlist([....])) ``` @@ -84,17 +84,16 @@ Time performances comparison between `list`, `numpy.ndarray`, and `arrex.typed execution time (s) for 10k elements (dvec3) -``` -set item - list: 2.31e-03 - numpy: 8.29e-03 - arrex: 2.29e-03 (3x faster then numpy) - -get item - list: 5.47e-04 - numpy: 1.54e-03 - arrex: 7.47e-04 (2x faster than numpy) -``` + set item + list: 2.31e-03 + numpy: 8.29e-03 + arrex: 2.29e-03 (3x faster then numpy) + + get item + list: 5.47e-04 + numpy: 1.54e-03 + arrex: 7.47e-04 (2x faster than numpy) + ## Roadmap