-
Notifications
You must be signed in to change notification settings - Fork 17
/
Plan.Rmd
91 lines (52 loc) · 1.87 KB
/
Plan.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# What are Tidy Data? {#intro}
* Define tidy data
* Describe benefits of tidy data [**covered, but needs more**]
* Examples of non-tidy --> tidy
* Examples of general data science workflows in R [**maybe covered?**] (Data Science Lifecycle?)
* Intro to / Explanation of the tidyverse ecosystem
# Reading in Data
* External data to tibbles [explicit discussion of tibbles **missing**]
* Reading in spreadsheets (googlesheets, readxl, googledrive)
* CSV/delimited text files (readr)
* Foreign formats (haven) [**missing**]
* JSON (jsonlite)
* SQL (dbplyr)
* Web scraping (rvest)
* APIs (httr)
* Images (magick) [details **missing**] - not sure if we should include
* Audio? (tuneR and seawave) [details **missing**] - not sure if we should include
# Tidying Your Data
* Data wrangling (dplyr, tidyr, forcats, glue, janitor, skimr, naniar) [**`glue` missing**] - remove reshape2?
* Dates/times (lubridate)
* Strings/regex (stringr)
* tidytext example [**covered, but needs more** (I have some of this elsewhere)]
* Functional programming (purrr) [**missing**]
* Basic EDA
# Visualization
* Principles of visualization
* Types of plots
* EDA w/ggplot2
* ggplot2 fundamentals
* gganimate, ggrepel [**missing** (some basics are covered)]
* tables (knitr, kableExtra)
* multiple plots (cowplot) [**missing**]
# Prediction Modeling with Tidy Data
Linear modeling
* lm, glm
* broom / tidy model processing
* basic inference with linear models
* penalization (L2 ridge / L1 lasso)
Some prediction modeling concepts
* What is prediction / prediction error
* train / test sets
* evaluation metrics (mse, fpr, tpr, recall, etc.)
The parsnip / tidymodels cycle
* recipes - prepare data
* juice / bake - create datasets
* model specification
* engine
* prediction / posterior sims
Applications
* Simple linear regression
* Basic machine learning
* Some Bayesian thing (w/Stan)?