-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathlogger.py
executable file
·151 lines (130 loc) · 8.1 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import datetime
import os
import numpy as np
import cv2
import torch
import glob
import json
import utils
# import h5py
class Logger():
def __init__(self, continue_logging, logging_directory, args=None, dir_name=''):
# Create directory to save data
self.continue_logging = continue_logging
if self.continue_logging:
self.base_directory = logging_directory
print('Pre-loading data logging session: %s' % (self.base_directory))
else:
if not dir_name:
dir_name = utils.timeStamped('')
self.base_directory = os.path.join(logging_directory, dir_name)
print('Creating data logging session: %s' % (self.base_directory))
self.info_directory = os.path.join(self.base_directory, 'info')
self.color_images_directory = os.path.join(self.base_directory, 'data', 'color-images')
self.depth_images_directory = os.path.join(self.base_directory, 'data', 'depth-images')
self.color_heightmaps_directory = os.path.join(self.base_directory, 'data', 'color-heightmaps')
self.depth_heightmaps_directory = os.path.join(self.base_directory, 'data', 'depth-heightmaps')
self.models_directory = os.path.join(self.base_directory, 'models')
self.visualizations_directory = os.path.join(self.base_directory, 'visualizations')
self.recordings_directory = os.path.join(self.base_directory, 'recordings')
self.transitions_directory = os.path.join(self.base_directory, 'transitions')
if not os.path.exists(self.info_directory):
os.makedirs(self.info_directory)
if not os.path.exists(self.color_images_directory):
os.makedirs(self.color_images_directory)
if not os.path.exists(self.depth_images_directory):
os.makedirs(self.depth_images_directory)
if not os.path.exists(self.color_heightmaps_directory):
os.makedirs(self.color_heightmaps_directory)
if not os.path.exists(self.depth_heightmaps_directory):
os.makedirs(self.depth_heightmaps_directory)
if not os.path.exists(self.models_directory):
os.makedirs(self.models_directory)
if not os.path.exists(self.visualizations_directory):
os.makedirs(self.visualizations_directory)
if not os.path.exists(self.recordings_directory):
os.makedirs(self.recordings_directory)
if not os.path.exists(self.transitions_directory):
os.makedirs(os.path.join(self.transitions_directory, 'data'))
if args is not None:
params_path = os.path.join(self.base_directory, 'commandline_args.json')
with open(params_path, 'w') as f:
json.dump(vars(args), f, sort_keys=True)
def save_camera_info(self, intrinsics, pose, depth_scale):
np.savetxt(os.path.join(self.info_directory, 'camera-intrinsics.txt'), intrinsics, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'camera-pose.txt'), pose, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'camera-depth-scale.txt'), [depth_scale], delimiter=' ')
def save_heightmap_info(self, boundaries, resolution):
np.savetxt(os.path.join(self.info_directory, 'heightmap-boundaries.txt'), boundaries, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'heightmap-resolution.txt'), [resolution], delimiter=' ')
def save_images(self, iteration, color_image, depth_image, mode):
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(self.color_images_directory, '%06d.%s.color.png' % (iteration, mode)), color_image)
depth_image = np.round(depth_image * 10000).astype(np.uint16) # Save depth in 1e-4 meters
cv2.imwrite(os.path.join(self.depth_images_directory, '%06d.%s.depth.png' % (iteration, mode)), depth_image)
def save_heightmaps(self, iteration, color_heightmap, depth_heightmap, mode, poststring=None, debug=False):
color_heightmap = cv2.cvtColor(color_heightmap, cv2.COLOR_RGB2BGR)
if debug:
original_depth_heightmap = depth_heightmap.copy()
if poststring is not None:
color_filename = '%06d.%s.%s.color.png' % (iteration, mode, str(poststring))
depth_filename = '%06d.%s.%s.depth.png' % (iteration, mode, str(poststring))
else:
color_filename = '%06d.%s.color.png' % (iteration, mode)
depth_filename = '%06d.%s.depth.png' % (iteration, mode)
# save color
cv2.imwrite(os.path.join(self.color_heightmaps_directory, color_filename), color_heightmap)
# save depth
depth_heightmap = np.round(depth_heightmap * 100000).astype(np.uint16) # Save depth in 1e-5 meters
depth_heightmap_path = os.path.join(self.depth_heightmaps_directory, depth_filename)
cv2.imwrite(depth_heightmap_path, depth_heightmap)
if debug:
converted_depth_heightmap = depth_heightmap.astype(np.float32) / 100000
saved_reloaded_depth_heightmap = np.array(cv2.imread(depth_heightmap_path, cv2.IMREAD_ANYDEPTH)).astype(np.float32) / 100000
import matplotlib.pyplot as plt
f = plt.figure()
f.add_subplot(1,3, 1)
plt.imshow(original_depth_heightmap)
f.add_subplot(1,3, 2)
# f.add_subplot(1,2, 1)
plt.imshow(converted_depth_heightmap)
f.add_subplot(1,3, 3)
plt.imshow(saved_reloaded_depth_heightmap)
plt.show(block=True)
def write_to_log(self, log_name, log, pickle=False, fmt='%.3f'):
# need to pickle and use savez when saving embeddings (>1 dim)
if pickle:
np.savez(os.path.join(self.transitions_directory, '%s.log.txt' % log_name), log)
else:
np.savetxt(os.path.join(self.transitions_directory, '%s.log.txt' % log_name), log, delimiter=' ', fmt=fmt)
if fmt != '%s':
shortlog = np.squeeze(log)
if len(shortlog.shape) > 0:
np.savetxt(os.path.join(self.transitions_directory, '%s.log.csv' % log_name), shortlog, delimiter=', ', header=log_name, fmt=fmt)
def save_model(self, model, name):
torch.save(model.state_dict(), os.path.join(self.models_directory, 'snapshot.%s.pth' % (name)))
def save_backup_model(self, model, name):
torch.save(model.state_dict(), os.path.join(self.models_directory, 'snapshot-backup.%s.pth' % (name)))
def save_visualizations(self, iteration, affordance_vis, name):
cv2.imwrite(os.path.join(self.visualizations_directory, '%06d.%s.png' % (iteration,name)), affordance_vis)
# def save_state_features(self, iteration, state_feat):
# h5f = h5py.File(os.path.join(self.visualizations_directory, '%06d.state.h5' % (iteration)), 'w')
# h5f.create_dataset('state', data=state_feat.cpu().data.numpy())
# h5f.close()
# Record RGB-D video while executing primitive
# recording_directory = logger.make_new_recording_directory(iteration)
# camera.start_recording(recording_directory)
# camera.stop_recording()
def make_new_recording_directory(self, iteration):
recording_directory = os.path.join(self.recordings_directory, '%06d' % (iteration))
if not os.path.exists(recording_directory):
os.makedirs(recording_directory)
return recording_directory
def save_transition(self, iteration, transition):
depth_heightmap = np.round(transition.state * 100000).astype(np.uint16) # Save depth in 1e-5 meters
cv2.imwrite(os.path.join(self.transitions_directory, 'data', '%06d.0.depth.png' % (iteration)), depth_heightmap)
next_depth_heightmap = np.round(transition.next_state * 100000).astype(np.uint16) # Save depth in 1e-5 meters
cv2.imwrite(os.path.join(self.transitions_directory, 'data', '%06d.1.depth.png' % (iteration)), next_depth_heightmap)
# np.savetxt(os.path.join(self.transitions_directory, '%06d.action.txt' % (iteration)), [1 if (transition.action == 'grasp') else 0], delimiter=' ')
# np.savetxt(os.path.join(self.transitions_directory, '%06d.reward.txt' % (iteration)), [reward_value], delimiter=' ')