-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathRBC_Python.py
110 lines (74 loc) · 3.67 KB
/
RBC_Python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Basic RBC model with full depreciation
#
# Jesus Fernandez-Villaverde
# Haverford, July 31, 2013
# 0. Initialization
import numpy as np
import math
import time
t1=time.time()
# 1. Calibration
aalpha = 1.0/3.0 # Elasticity of output w.r.t. capital
bbeta = 0.95 # Discount factor
# Productivity values
vProductivity = np.array([0.9792, 0.9896, 1.0000, 1.0106, 1.0212],float)
# Transition matrix
mTransition = np.array([[0.9727, 0.0273, 0.0000, 0.0000, 0.0000],
[0.0041, 0.9806, 0.0153, 0.0000, 0.0000],
[0.0000, 0.0082, 0.9837, 0.0082, 0.0000],
[0.0000, 0.0000, 0.0153, 0.9806, 0.0041],
[0.0000, 0.0000, 0.0000, 0.0273, 0.9727]],float)
## 2. Steady State
capitalSteadyState = (aalpha*bbeta)**(1/(1-aalpha))
outputSteadyState = capitalSteadyState**aalpha
consumptionSteadyState = outputSteadyState-capitalSteadyState
print "Output = ", outputSteadyState, " Capital = ", capitalSteadyState, " Consumption = ", consumptionSteadyState
# We generate the grid of capital
vGridCapital = np.arange(0.5*capitalSteadyState,1.5*capitalSteadyState,0.00001)
nGridCapital = len(vGridCapital)
nGridProductivity = len(vProductivity)
## 3. Required matrices and vectors
mOutput = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mValueFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mValueFunctionNew = np.zeros((nGridCapital,nGridProductivity),dtype=float)
mPolicyFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
expectedValueFunction = np.zeros((nGridCapital,nGridProductivity),dtype=float)
# 4. We pre-build output for each point in the grid
for nProductivity in range(nGridProductivity):
mOutput[:,nProductivity] = vProductivity[nProductivity]*(vGridCapital**aalpha)
## 5. Main iteration
maxDifference = 10.0
tolerance = 0.0000001
iteration = 0
while(maxDifference > tolerance):
expectedValueFunction = np.dot(mValueFunction,mTransition.T)
for nProductivity in range(nGridProductivity):
# We start from previous choice (monotonicity of policy function)
gridCapitalNextPeriod = 0
for nCapital in range(nGridCapital):
valueHighSoFar = -100000.0
capitalChoice = vGridCapital[0]
for nCapitalNextPeriod in range(gridCapitalNextPeriod,nGridCapital):
consumption = mOutput[nCapital,nProductivity] - vGridCapital[nCapitalNextPeriod]
#expectedValueFunction = np.dot(mTransition[nProductivity,:],mValueFunction[nCapitalNextPeriod,:])
valueProvisional = (1-bbeta)*math.log(consumption)+bbeta*expectedValueFunction[nCapitalNextPeriod,nProductivity];
if valueProvisional>valueHighSoFar:
valueHighSoFar = valueProvisional
capitalChoice = vGridCapital[nCapitalNextPeriod]
gridCapitalNextPeriod = nCapitalNextPeriod
else:
break # We break when we have achieved the max
mValueFunctionNew[nCapital,nProductivity] = valueHighSoFar
mPolicyFunction[nCapital,nProductivity] = capitalChoice
maxDifference = (abs(mValueFunctionNew-mValueFunction)).max()
mValueFunction = mValueFunctionNew
mValueFunctionNew = np.zeros((nGridCapital,nGridProductivity),dtype=float)
iteration += 1
if(iteration%10 == 0 or iteration == 1):
print " Iteration = ", iteration, ", Sup Diff = ", maxDifference
print " Iteration = ", iteration, ", Sup Duff = ", maxDifference
print " "
print " My Check = ", mPolicyFunction[1000-1,3-1]
print " "
t2=time.time()
print "Elapse time = is ", t2-t1