-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathRBC_Mathematica.m
130 lines (101 loc) · 3.74 KB
/
RBC_Mathematica.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Clear["Global`*"];
AbsoluteTiming[
(* Compiling the inner Loop *)
(* NOTE: Using the un-documented Compile`GetElement function instead \
of Part *)
innerLoop =
Compile[{{mOutput, _Real, 2}, {vGridCapital, _Real,
1}, {nGridCapital, _Integer},
{nGridProductivity, _Integer}, {expectedValueFunction, _Real,
2}},
With[{initialCapital = First[vGridCapital]},
Table[
Module[{gridCapitalNextPeriod = 1},
Table[
With[{output =
Compile`GetElement[mOutput, nCapital, nProductivity]},
Module[{
valueProvisional = 0.,
valueHighSoFar = -1000.0,
capitalChoice = initialCapital},
Catch@Do[
valueProvisional =
0.05 Log[
output -
Compile`GetElement[vGridCapital, nCapitalNextPeriod]] +
0.95 Compile`GetElement[expectedValueFunction,
nCapitalNextPeriod, nProductivity];
If[valueProvisional > valueHighSoFar,
valueHighSoFar = valueProvisional;
capitalChoice =
Compile`GetElement[vGridCapital, nCapitalNextPeriod];
gridCapitalNextPeriod = nCapitalNextPeriod;
,
Throw[{valueHighSoFar, capitalChoice}]
],
{nCapitalNextPeriod, gridCapitalNextPeriod,
nGridCapital}]]],
{nCapital, nGridCapital}]],
{nProductivity, nGridProductivity}]
],
CompilationTarget -> "C", "RuntimeOptions" -> "Speed" ];
(* 1. Calibration*)
\[Alpha] = 0.333333333333;
\[Beta] = 0.95;
(* Productivity values*)
vProductivity = {0.9792, 0.9896, 1.0000, 1.0106, 1.0212};
(* Transition matrix *)
mTransition = {{0.9727, 0.0273, 0.0000, 0.0000, 0.0000},
{0.0041, 0.9806, 0.0153, 0.0000, 0.0000},
{0.0000, 0.0082, 0.9837, 0.0082, 0.0000},
{0.0000, 0.0000, 0.0153, 0.9806, 0.0041},
{0.0000, 0.0000, 0.0000, 0.0273, 0.9727}};
mTransitionTransposed = Transpose[mTransition];
(* 2. Steady State*)
Subscript[k, ss] = (\[Alpha] \[Beta])^(1/(1 - \[Alpha]));
Subscript[y, ss] = Subscript[k, ss]^\[Alpha];
Subscript[c, ss] = Subscript[y, ss] - Subscript[k, ss];
(* We generate the grid of capital*)
vGridCapital =
Range[0.5 Subscript[k, ss], 1.5 Subscript[k, ss], 0.00001];
nGridCapital = Length[vGridCapital];
nGridProductivity = Length[vProductivity];
(*3. Required matrices and vectors*)
mOutput = ConstantArray[0, {nGridCapital, nGridProductivity}];
mValueFunction =
ConstantArray[0, {nGridCapital, nGridProductivity}];
mValueFunctionNew =
ConstantArray[0, {nGridCapital, nGridProductivity}];
mPolicyFunction =
ConstantArray[0, {nGridCapital, nGridProductivity}];
expectedValueFunction =
ConstantArray[0, {nGridCapital, nGridProductivity}];
(*4. We pre-build output for each point in the grid*)
mOutput = Transpose[{vGridCapital^\[Alpha]}].{vProductivity};
(* FixedPoint *)
tolerance = 0.0000001;
iteration = 0;
dis = 0;
(* outer Loop function *)
outerLoop[{mValueFunction_, mPolicyFunction_}] := Transpose[
innerLoop[mOutput, vGridCapital, nGridCapital, nGridProductivity,
Dot[mValueFunction, mTransitionTransposed]],
{3, 2, 1}];
(* Iteration *)
{mValueFunction, mPolicyFunction} =
FixedPoint[outerLoop, {mValueFunction, mPolicyFunction},
SameTest ->
(
(dis = Max[Abs[#1[[1]] - #2[[1]]]];
iteration++;
If[Mod[iteration, 10] == 0 || iteration == 1,
Print[
StringForm["Iteration = ``, Sup Diff = ``", iteration,
dis]]];
dis < tolerance ) &
)
];
Print[StringForm["Iteration = ``, Sup Diff = ``", iteration, dis]];
Print[StringForm["My check = ``", mPolicyFunction[[1000, 3]]]];
]
(* Mathematica Raw Program *)