-
Notifications
You must be signed in to change notification settings - Fork 0
/
mdn.py
207 lines (174 loc) · 7.95 KB
/
mdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""A module for a mixture density network layer."""
import torch
import torch.nn as nn
from torch.distributions import Categorical
from extract.modules.variational_inference import MultivariateGaussian
from extract.utils.pytorch_utils import ten2ar
class MDN(nn.Module):
"""A mixture density network layer"""
def __init__(self, input_size, output_size, num_gaussians):
super(MDN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_gaussians = num_gaussians
self.pi = nn.Sequential(
nn.Linear(input_size, num_gaussians),
nn.Softmax(dim=1)
)
self.log_sigma = nn.Linear(input_size, output_size * num_gaussians)
self.mu = nn.Linear(input_size, output_size * num_gaussians)
def forward(self, inputs):
return torch.clamp(self.pi(inputs), min=1e-6), \
self.mu(inputs).reshape(-1, self.num_gaussians, self.output_size), \
torch.clamp(self.log_sigma(inputs).reshape(-1, self.num_gaussians, self.output_size), -10, 2)
class GMM:
"""Gaussian Mixture Model class."""
def __init__(self, pi, mu=None, log_sigma=None):
if mu is None and log_sigma is None:
if isinstance(pi, tuple):
pi, mu, log_sigma = pi # in case inputs are passed in as tuple
else:
pi, mu, log_sigma = self.tensor2gmm(pi)
self.pi = pi
self.mu = mu
self.log_sigma = log_sigma
self._components = [MultivariateGaussian(mu[..., idx, :], log_sigma[..., idx, :]) for idx in range(mu.shape[-2])]
def nll(self, x):
return -1 * self.log_prob(x)
def log_prob(self, x):
return torch.logsumexp(torch.log(self.pi) +
MultivariateGaussian(self.mu, self.log_sigma).log_prob(x[:, None]), dim=1)
def sample(self):
"""Differentiable sampling function."""
return (MultivariateGaussian(self.mu, self.log_sigma).sample() *
torch.nn.functional.one_hot(Categorical(self.pi).sample(),
num_classes=self.pi.shape[-1])[..., None].float()).sum(dim=1)
def rsample(self):
return self.sample()
def entropy(self):
"""!!! This is not the true entropy of the GMM (there is no closed form) but only an indicator. !!!"""
return torch.stack([c.entropy() for c in self._components], dim=1)
def detach(self):
return GMM(self.pi.detach(), self.mu.detach(), self.log_sigma.detach())
def tensor(self):
"""Returns flat tensor representation of GMM."""
return torch.cat((self.pi, self.mu.flatten(start_dim=1), self.log_sigma.flatten(start_dim=1),
self.pi.shape[1] * torch.ones((self.pi.shape[0], 1), device=self.pi.device)), dim=-1)
@staticmethod
def tensor2gmm(tensor):
"""Unwraps flattened tensor representation generated by tensor() function."""
num_gaussians = tensor[0, -1].long()
nz = (tensor.shape[1] - 1 - num_gaussians) / num_gaussians / 2
pi = tensor[:, :num_gaussians]
mu = tensor[:, num_gaussians : num_gaussians + (num_gaussians*nz)].reshape(-1, num_gaussians, nz)
log_sigma = tensor[:, -(num_gaussians*nz + 1) : -1].reshape(-1, num_gaussians, nz)
return pi, mu, log_sigma
def to_numpy(self):
"""Convert internal variables to numpy arrays."""
return GMM(ten2ar(self.pi), ten2ar(self.mu), ten2ar(self.log_sigma))
@staticmethod
def stack(*argv, dim):
return GMM._combine(torch.stack, *argv, dim=dim)
@staticmethod
def cat(*argv, dim):
return GMM._combine(torch.cat, *argv, dim=dim)
@staticmethod
def _combine(fcn, *argv, dim):
pi, mu, log_sigma = [], [], []
for g in argv:
pi.append(g.pi); mu.append(g.mu); log_sigma.append(g.log_sigma)
pi, mu, log_sigma = fcn(pi, dim), fcn(mu, dim), fcn(log_sigma, dim)
return GMM(pi, mu, log_sigma)
def __getitem__(self, item):
return GMM(self.pi[item], self.mu[item], self.log_sigma[item])
def __iter__(self):
for pi, c in zip(self.pi, self._components):
yield pi, c
if __name__ == "__main__":
### VISUALIZE
# from extract.utils.pytorch_utils import ten2ar
from extract.utils.general_utils import split_along_axis
# import numpy as np
from matplotlib import pyplot as plt
from matplotlib.patches import Ellipse
# gmm = GMM(torch.rand((1, 5)), torch.tensor([[[0., 0], [1, 1], [1, -1], [-1, 1], [-1, -1]]]),
# torch.tensor([[[-1, -0.3], [-2, -1], [-2, -0.4], [-3, -1], [-0.5, -2]]]))
#
def _draw_gaussian(ax, gauss_tensor, color, weight=None):
px, py, p_logsig_x, p_logsig_y = split_along_axis(ten2ar(gauss_tensor), axis=0)
def logsig2std(logsig):
return np.exp(logsig)
ell = Ellipse(xy=(px, py),
width=2*logsig2std(p_logsig_x), height=2*logsig2std(p_logsig_y),
angle=0, color=color) # this assumes diagonal gaussian
if weight is not None:
ell.set_alpha(weight)
else:
ell.set_facecolor('none')
ax.add_artist(ell)
#
#
# fig = plt.figure()
# ax = plt.subplot(111)
# plt.xlim(-2, 2); plt.ylim(-2, 2)
# [_draw_gaussian(ax, component.tensor(), 'green', ten2ar(weight)) for weight, component in gmm[0]]
#
# samples = np.concatenate([gmm.sample() for _ in range(1000)])
# plt.scatter(samples[:, 0], samples[:, 1])
# plt.savefig("test.png")
### TRAIN
import numpy as np
import matplotlib.pyplot as plt
from extract.utils.general_utils import AttrDict
from extract.modules.layers import LayerBuilderParams
from extract.modules.subnetworks import Predictor
# generate data
pi = torch.tensor([0.7, 0.1, 0.1, 0.1])[None].repeat(256, 1)
mu = torch.tensor([[1.0, -1.0, 0.0, 0.0], [0.0, 0.0, 1.0, -1.0]])[None].repeat(256, 1, 1).transpose(-1, -2)
log_sigma = torch.zeros_like(mu) + torch.tensor(np.log(0.1))
data_dist = GMM(pi=pi, mu=mu, log_sigma=log_sigma)
data = data_dist.sample().data.numpy()
# set up flow model
trainable_input = torch.zeros((256, 2), requires_grad=True)
hp = AttrDict({
'nz_mid': 32,
'n_processing_layers': 3,
})
hp.builder = LayerBuilderParams(False, 'batch')
model = torch.nn.Sequential(
Predictor(hp, input_size=2, output_size=hp.nz_mid),
MDN(input_size=hp.nz_mid, output_size=2, num_gaussians=4)
)
pydata = torch.tensor(data, dtype=torch.float32)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
# train flow model
for i in range(6000):
optimizer.zero_grad()
gmm_dist = GMM(model(trainable_input))
loss_samples = []
for _ in range(10):
data_sample = data_dist.sample()
gmm_sample = gmm_dist.rsample()
# loss = gmm_dist.nll(pydata).mean()
# loss = (gmm_dist.log_prob(gmm_sample) - data_dist.log_prob(gmm_sample))
loss = (data_dist.log_prob(data_sample) - gmm_dist.log_prob(data_sample))
# loss = (gmm_dist.log_prob(gmm_sample) - data_dist.log_prob(gmm_sample)) + \
# (data_dist.log_prob(data_sample) - gmm_dist.log_prob(data_sample))
loss_samples.append(loss)
loss = torch.cat(loss_samples).mean()
loss.backward()
optimizer.step()
if i % 100 == 0:
print(f"Iter: {i}\t" +
f"NLL: {loss.mean().data:.2f}\t")
# visualize samples
samples = gmm_dist.sample().data.numpy()
fig = plt.figure()
ax = plt.subplot(111)
plt.xlim(-2, 2); plt.ylim(-2, 2)
# plt.scatter(data[:, 0], data[:, 1], c='black', alpha=0.1)
# plt.scatter(samples[:, 0], samples[:, 1], c='green', alpha=0.5)
[_draw_gaussian(ax, component.tensor(), 'green', ten2ar(weight)) for weight, component in gmm_dist[0]]
plt.axis("equal")
plt.savefig("gmm_fit.png")
# plt.show()