-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMBExperiment.py
231 lines (205 loc) · 10.9 KB
/
MBExperiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from time import localtime, strftime, perf_counter
from dotmap import DotMap
from scipy.io import savemat
from tqdm import trange
from Agent import Agent
from DotmapUtils import get_required_argument
import pickle
from tensorboardX import SummaryWriter
import numpy as np
from gym import wrappers
import torch
TORCH_DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
class MBExperiment:
def __init__(self, params):
"""Initializes class instance.
Argument:
params (DotMap): A DotMap containing the following:
.sim_cfg:
.env (gym.env): Environment for this experiment.
.task_hor (int): Task horizon.
.test_percentile (float): Risk-aversion percentile used for testing.
.record_video (bool): Whether to record training/adaptation iterations.
.exp_cfg:
.ntrain_iters (int): Number of training iterations to be performed.
.nrollouts_per_iter (int): (optional) Number of rollouts done between training
iterations. Defaults to 1.
.ninit_rollouts (int): (optional) Number of initial rollouts. Defaults to 1.
.policy (controller): Policy that will be trained.
.ntest_rollouts (int): Number of rollouts for measuring test performance.
.nadapt_iters (int): (optional) Number of adaptation iters to perform. 10 in paper.
.continue_train (bool): Whether to continue training from a load_model_dir.
.test_domain (float): Environment domain used for adaptation/testing.
.nrollout_per_itr (int): Number of rollouts per training iteration.
.start_epoch (int): Which epoch to start training from, used for continuing to train
a trained model.
.log_cfg:
.logdir (str): Directory to log to.
.suffix (str): Suffix to add to logdir.
"""
# Assert True arguments that we currently do not support
assert params.sim_cfg.get("stochastic", False) == False
self.env = get_required_argument(params.sim_cfg, "env", "Must provide environment.")
self.task_hor = get_required_argument(params.sim_cfg, "task_hor", "Must provide task horizon.")
self.ntrain_iters = get_required_argument(
params.exp_cfg, "ntrain_iters", "Must provide number of training iterations."
)
self.test_percentile = params.sim_cfg.test_percentile
self.nrollouts_per_iter = params.exp_cfg.get("nrollouts_per_iter", 1)
self.ninit_rollouts = params.exp_cfg.get("ninit_rollouts", 1)
self.ntest_rollouts = params.exp_cfg.get("ntest_rollouts", 1)
self.nadapt_iters = params.exp_cfg.get("nadapt_iters", 0)
self.policy = get_required_argument(params.exp_cfg, "policy", "Must provide a policy.")
self.continue_train = params.exp_cfg.get("continue_train", False)
self.test_domain = params.exp_cfg.get("test_domain", None)
self.nrollout_per_itr = params.exp_cfg.get("nrollout_per_itr", 1)
self.start_epoch = params.exp_cfg.get("start_epoch", 0)
self.training_percentile = self.policy.percentile
if self.continue_train:
self.logdir = params.exp_cfg.load_model_dir
self.policy.ac_buf = np.load(os.path.join(self.logdir, "ac_buf.npy"))
self.policy.prev_sol = np.load(os.path.join(self.logdir, "prev_sol.npy"))
self.policy.init_var = np.load(os.path.join(self.logdir, "init_var.npy"))
self.policy.train_in = np.load(os.path.join(self.logdir, "train_in.npy"))
self.policy.train_targs = np.load(os.path.join(self.logdir, "train_targs.npy"))
self.logdir = os.path.join(
get_required_argument(params.log_cfg, "logdir", "Must provide log parent directory."),
strftime("%Y-%m-%d--%H-%M-%S", localtime())
)
self.suffix = params.log_cfg.get("suffix", None)
if self.suffix is not None:
self.logdir = self.logdir + '-' + self.suffix
self.writer = SummaryWriter(self.logdir + '-tboard')
self.record_video = params.sim_cfg.get("record_video", False)
if self.test_domain is not None:
self.env.test_domain = self.test_domain
print("Setting test domain to: %0.3f" % self.env.test_domain)
def run_experiment(self):
"""Perform experiment.
"""
os.makedirs(self.logdir, exist_ok=True)
# Train with random data first
samples = []
self.agent = Agent()
for i in range(self.ninit_rollouts):
if self.record_video:
self.record_env = wrappers.Monitor(self.env, "%s/init_iter_%d" % (self.logdir, i), force=True)
samples.append(
self.agent.sample(
self.task_hor, self.policy, record=False,
env=self.env,
)
)
if self.ninit_rollouts > 0:
self.policy.train(
[sample["obs"] for sample in samples],
[sample["ac"] for sample in samples],
[sample["rewards"] for sample in samples],
)
self.run_training_iters(adaptation=False)
# Save training buffers at end of training so we can load for adaptation if required
old_train_in = self.policy.train_in
old_train_targs = self.policy.train_targs
old_ac_buf = self.policy.ac_buf
old_prev_sol = self.policy.prev_sol
old_init_var = self.policy.init_var
torch.save(self.policy.model.state_dict(),
os.path.join(self.logdir, 'weights'))
np.save(os.path.join(self.logdir, "ac_buf.npy"), old_ac_buf)
np.save(os.path.join(self.logdir, "prev_sol.npy"), old_prev_sol)
np.save(os.path.join(self.logdir, "init_var.npy"), old_init_var)
np.save(os.path.join(self.logdir, "train_in.npy"), old_train_in)
np.save(os.path.join(self.logdir, "train_targs.npy"), old_train_targs)
self.run_training_iters(adaptation=True)
self.run_test_evals(self.nadapt_iters)
def run_training_iters(self, adaptation):
max_return = -float("inf")
if adaptation:
iteration_range = [self.nadapt_iters]
percentile = self.test_percentile
print_str = "ADAPT"
else:
iteration_range = [self.start_epoch, self.ntrain_iters]
percentile = self.training_percentile
print_str = "TRAIN"
for i in trange(*iteration_range):
if i % 2 == 0 and adaptation:
self.run_test_evals(i)
print("####################################################################")
print("Starting training on " + print_str + " env iteration %d" % (i + 1))
samples = []
self.policy.clear_stats()
self.policy.percentile = percentile
for j in range(max(self.nrollout_per_itr, self.nrollouts_per_iter)):
self.policy.percentile = percentile
if self.record_video:
self.env = wrappers.Monitor(self.env, "%s/%s_iter_%d_percentile/percentile_%d_rollout_%d" % (self.logdir, print_str, i, self.policy.percentile, j), force=True)
self.policy.logdir = "%s/%s_iter_%d" % (self.logdir, print_str, i)
samples.append(
self.agent.sample(
self.task_hor, self.policy, record=self.record_video and adaptation,
env=self.env, mode='test' if adaptation else 'train',
)
)
if self.record_video:
self.env = self.env.env
eval_samples = samples
self.writer.add_scalar('mean-' + print_str + '-return',
float(sum([sample["reward_sum"] for sample in eval_samples])) / float(len(eval_samples)),
i)
max_return = max(float(sum([sample["reward_sum"] for sample in eval_samples])) / float(len(eval_samples)), max_return)
self.writer.add_scalar('max-' + print_str + '-return',
max_return,
i)
rewards = [sample["reward_sum"] for sample in eval_samples]
print("Rewards obtained:", rewards)
samples = samples[:self.nrollouts_per_iter]
self.policy.train(
[sample["obs"] for sample in samples],
[sample["ac"] for sample in samples],
[sample["rewards"] for sample in samples],
)
if self.policy.mse_loss is not None:
mean_loss = np.mean(self.policy.mse_loss)
self.writer.add_scalar('%s-mean-loss' % print_str,
mean_loss, i)
if self.policy.catastrophe_loss is not None:
self.writer.add_scalar('%s-catastrophe-loss' % print_str,
self.policy.catastrophe_loss, i)
def run_test_evals(self, adaptation_iteration):
print("Beginning evaluation rollouts.")
if self.test_percentile is not None:
self.policy.percentile = self.test_percentile
samples = []
for i in range(self.ntest_rollouts):
if self.record_video:
self.env = wrappers.Monitor(self.env, "%s/test_eval_%d" % (self.logdir, i), force=True)
if not hasattr(self, "agent"):
self.agent = Agent()
self.policy.clear_stats()
cur_sample = self.agent.sample(
self.task_hor, self.policy, record=self.record_video,
env=self.env, mode='test',
)
if self.record_video:
self.env = self.env.env
samples.append(cur_sample)
mean_test_return = float(sum([cur_sample["reward_sum"] for sample in cur_sample])) / float(len(cur_sample))
print("Evaluation mean-return (rollout number %d out of %d): %f" % (
i,
self.ntest_rollouts,
mean_test_return
))
if self.ntest_rollouts > 0:
num_catastrophes = sum([1 if sample["catastrophe"] else 0 for sample in samples])
self.writer.add_scalar('num-catastrophes',
num_catastrophes,
adaptation_iteration)
mean_test_return = float(sum([sample["reward_sum"] for sample in samples])) / float(len(samples))
self.writer.add_scalar('mean-test-return:',
mean_test_return, adaptation_iteration)
self.writer.close()