-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSociology.py
executable file
·248 lines (189 loc) · 8.63 KB
/
Sociology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import pandas as pd
import numpy as np
import math
######################
# NODES
######################
#Reading and initializing all required resources
survey = pd.read_csv("/Users/jermainezhimin/Desktop/Socio Project/survey.csv")
surveyHeaders = list(survey.columns.values)
#Basic nodes
basicDict = {}
basicDict['Names'] = [a.lstrip().rstrip() for a in survey['Name']]
basicDict['name.Pillar'] = [a.lstrip().rstrip() for a in survey['Pillar']]
basicDict['name.GLPALP'] = [a.lstrip().rstrip() for a in survey['GLP/ALP?']]
basicDict['name.Club'] = [a for a in survey['How many voluntary interest or sports groups are you a member of?']]
basicDict['name.Residential'] = [a for a in survey['Residential']]
'''
pd.DataFrame(basicDict).to_csv('nodes.csv',index=False)
'''
#Name
nameFHeaders = [surveyHeaders[i] for i in [1, #Name
5,9,13,17,21,25,29,33,37,41]] #Freshmore
namePHeaders = [surveyHeaders[i] for i in [1, #Name
45,49,53,57,61,65,69,73,77,81]] #Pillar
#Pillar
pillarFHeaders = [surveyHeaders[i] for i in [3, #Name
6,10,14,18,22,26,30,34,38,42]] #Freshmore
pillarPHeaders = [surveyHeaders[i] for i in [3, #Name
46,50,54,58,62,66,70,74,78,82]] #Pillar
#Sex
sexFHeaders = [surveyHeaders[i] for i in [2, #Name
7,11,15,19,23,27,31,35,39,43]] #Freshmore
sexPHeaders = [surveyHeaders[i] for i in [2, #Name
47,51,55,59,63,67,71,75,79,83]] #Pillar
#Class
classFHeaders = [surveyHeaders[i] for i in [4, #Name
8,12,16,20,24,28,32,36,40,44]] #Freshmore
classPHeaders = [surveyHeaders[i] for i in [4, #Name
48,52,56,60,64,68,72,76,80,84]] #Pillar
def nodeCompiler(fileName, nameHeaders, pillarHeaders, sexHeaders, classHeaders, survey):
print "==================START======================"
print "Creating nodelist " + fileName
nodeDict = {}
compiledNames = []
compiledPillars = []
compiledSex = []
compiledClass = []
#Compiling all names
for a in nameHeaders:
compiledNames = compiledNames + [b for b in survey[a]]
#Stripping white spaces
for a in compiledNames:
if (type(a) != float):
compiledNames[compiledNames.index(a)] = a.lstrip().rstrip()
#Compiling all pillars
for a in pillarHeaders:
compiledPillars = compiledPillars + [b for b in survey[a]]
#Compiling all sex
for a in sexHeaders:
compiledSex = compiledSex + [b for b in survey[a]]
#Compiling all classes
for a in classHeaders:
compiledClass = compiledClass + [b for b in survey[a]]
uniqueNames = []
uniquePillars = []
uniqueSex = []
uniqueClass = []
#Compiling unique names and pillars
for a in compiledNames:
if (not (a in uniqueNames)) and (type(a) != float):
uniqueNames = uniqueNames + [a]
uniquePillars = uniquePillars + [compiledPillars[compiledNames.index(a)]]
uniqueSex = uniqueSex + [compiledSex[compiledNames.index(a)]]
uniqueClass = uniqueClass + [compiledClass[compiledNames.index(a)]]
print "Length of nodelist: " + str(len(uniqueNames))
nodeDict['Names'] = uniqueNames
nodeDict['name.Pillar'] = uniquePillars
nodeDict['name.Sex'] = uniqueSex
nodeDict['name.Class'] = uniqueClass
pd.DataFrame(nodeDict).to_csv(fileName,index=False)
print "===================END=======================\n"
return
######################
# EDGES
######################
#Reading and initializing all required resources
edgePDict = {}
eNodeHeaders = 'Name' #Name
eFHeaders = [surveyHeaders[i] for i in [5,9,13,17,21,25,29,33,37,41]] #Freshmore
ePHeaders = [surveyHeaders[i] for i in [45,49,53,57,61,65,69,73,77,81]] #Pillar
def edgeCompiler(fileName, eNodeHeaders, eHeaders, survey):
print "==================START======================"
print "Creating edgelist " + fileName
edgeDict = {}
fromNames = []
toNames = []
#Compiling all edges and tidying string
for a in survey[eNodeHeaders]:
for b in eHeaders:
if (type(list(survey[b])[list(survey[eNodeHeaders]).index(a)]) != float):
fromNames = fromNames + [a]
toNames = toNames + [list(survey[b])[list(survey[eNodeHeaders]).index(a)]]
for a in fromNames:
fromNames[fromNames.index(a)] = a.lstrip().rstrip()
for a in toNames:
toNames[toNames.index(a)] = a.lstrip().rstrip()
#Checking the loops and ensuring one direction only
delIndex = []
for a in range(0,len(fromNames)):
test = [fromNames[a],toNames[a]]
for b in range(0,len(fromNames)):
if (a<b):
check = [fromNames[b],toNames[b]]
if sorted(test) == sorted(check):
delIndex = [a] + delIndex
delIndex = list(set(delIndex))
delIndex = sorted(delIndex,reverse=True)
for a in delIndex:
del fromNames[a]
del toNames[a]
print "Length of edgelist: " + str(len(fromNames))
edgeDict['From'] = fromNames
edgeDict['To'] = toNames
pd.DataFrame(edgeDict).to_csv(fileName,index=False)
print "===================END=======================\n"
return
def dupRemover(fileName, dupCsv, basicDict):
fromList = []
toList = []
edgeDup = dict(pd.read_csv(dupCsv))
for a in range(0,len(edgeDup['From'])):
if (edgeDup['From'][a] in basicDict['Names']) and (edgeDup['To'][a] in basicDict['Names']):
fromList.append(edgeDup['From'][a])
toList.append(edgeDup['To'][a])
edgeDup['From'] = fromList
edgeDup['To'] = toList
pd.DataFrame(edgeDup).to_csv(fileName,index=False)
######################
# FUNCTION CALLS
######################
nodeCompiler("nodeF.csv",nameFHeaders,pillarFHeaders,sexFHeaders,classFHeaders,survey)
nodeCompiler("nodeP.csv",namePHeaders,pillarPHeaders,sexPHeaders,classPHeaders,survey)
edgeCompiler("edgeF.csv", eNodeHeaders, eFHeaders, survey)
edgeCompiler("edgeP.csv", eNodeHeaders, ePHeaders, survey)
dupRemover("edgesF.csv", "/Users/jermainezhimin/Desktop/Socio Project/edgeF.csv", basicDict)
dupRemover("edgesP.csv", "/Users/jermainezhimin/Desktop/Socio Project/edgeP.csv", basicDict)
######################
# RELATION CALLS
######################
edgeF = pd.read_csv("/Users/jermainezhimin/Desktop/Socio Project/edgesF.csv")
edgeP = pd.read_csv("/Users/jermainezhimin/Desktop/Socio Project/edgesP.csv")
eFHeaders = ['GLP/ALP?','How many voluntary interest or sports groups are you a member of?','Residential'] #GLP and ALP Values
def statCalculator(fileName, bStat, basicNode, eStat, types, edgeList, survey):
basicNode[bStat + 'Stat' + types] = []
#Initializing Variables
for a in basicNode['Names']:
#Begin counting of friends and similar friends
checkStat = basicDict[bStat][basicNode['Names'].index(a)]
fri = 0.0
simFri = 0.0
#Check link start 'from' end 'to'
for b in range(0,len(edgeList['From'])):
if a==edgeList['From'][b]:
if edgeList['To'][b] in basicDict['Names']:
fri += 1.0
if checkStat== basicNode[bStat][basicDict['Names'].index(edgeList['To'][b])]:
simFri +=1.0
for c in range(0,len(edgeList['To'])):
if a==edgeList['To'][c]:
if edgeList['From'][c] in basicDict['Names']:
fri += 1.0
if checkStat== basicNode[bStat][basicDict['Names'].index(edgeList['From'][c])]:
simFri +=1.0
#Checking percentage
if fri !=0:
fri = float(simFri / fri)
basicNode[bStat + 'Stat' + types].append(fri)
else:
basicNode[bStat + 'Stat' + types].append(fri)
print "Calculated stats for " + bStat + " given " + types
pd.DataFrame(basicNode).to_csv(fileName,index=False)
'''
statCalculator('nodes.csv', 'name.Club', basicDict, 'How many voluntary interest or sports groups are you a member of?', 'F', edgeF, survey)
statCalculator('nodes.csv', 'name.Club', basicDict, 'How many voluntary interest or sports groups are you a member of?', 'P', edgeP, survey)
statCalculator('nodes.csv', 'name.GLPALP', basicDict, 'GLP/ALP?', 'F', edgeF, survey)
statCalculator('nodes.csv', 'name.GLPALP', basicDict, 'GLP/ALP?', 'P', edgeP, survey)
statCalculator('nodes.csv', 'name.Residential', basicDict, 'Residential', 'F', edgeF, survey)
statCalculator('nodes.csv', 'name.Residential', basicDict, 'Residential', 'P', edgeP, survey)
'''