-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDHT.cpp
219 lines (176 loc) · 4.96 KB
/
DHT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//
// Based on https://gist.github.com/wgbartley/8301123
// and https://github.com/adafruit/DHT-sensor-library/blob/master/DHT.cpp
//
#include "DHT.h"
#include "math.h"
/**
* Constructor
*/
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin;
_type = type;
_count = count;
_firstReading = true;
}
/**
* Sets up the pins
*/
void DHT::begin(void) {
// set up the pins!
pinMode(_pin, INPUT);
digitalWrite(_pin, HIGH);
_lastReadTime = 0;
}
/**
* Gets the current temperature
*/
float DHT::readTemperature(bool farenheit) {
float temp = NAN;
if (read()) {
switch (_type) {
case DHT11:
temp = _data[2];
case DHT22:
case DHT21:
temp = _data[2] & 0x7F;
temp *= 256;
temp += _data[3];
temp /= 10;
// negative temp
if (_data[2] & 0x80) {
temp *= -1;
}
}
if (farenheit) {
temp = convertCtoF(temp);
}
}
return temp;
}
/**
* Converts Celsius to Farenheit
*/
float DHT::convertCtoF(float c) {
return c * 9 / 5 + 32;
}
/**
* Converts Farenheit to Celsius
*/
float DHT::convertFtoC(float f) {
return (f - 32) * 0.55555;
}
/**
* Gets the current humidity
*/
float DHT::readHumidity(void) {
float humidity = NAN;
if (read()) {
switch (_type) {
case DHT11:
humidity = _data[0];
case DHT22:
case DHT21:
humidity = _data[0];
humidity *= 256;
humidity += _data[1];
humidity /= 10;
return humidity;
}
}
return humidity;
}
/**
* Computes the Heat Index
*/
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
// Using both Rothfusz and Steadman's equations
// http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
float hi;
if (!isFahrenheit) {
temperature = convertCtoF(temperature);
}
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 +
2.04901523 * temperature +
10.14333127 * percentHumidity +
-0.22475541 * temperature*percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature*pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
}
if ((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0)) {
hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
} else if ((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0)) {
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
}
return isFahrenheit ? hi : convertFtoC(hi);
}
/**
* Gets a reading from the DHT
*/
bool DHT::read(void) {
uint8_t lastState = HIGH;
uint8_t counter = 0;
uint8_t j = 0, i = 0;
unsigned long currentTime;
// pull the pin high and wait 250 milliseconds
digitalWrite(_pin, HIGH);
delay(250);
currentTime = millis();
if (currentTime < _lastReadTime) {
// ie there was a rollover
_lastReadTime = 0;
}
if (!_firstReading && ((currentTime - _lastReadTime) < 2000)) {
//delay(2000 - (currentTime - _lastReadTime));
return true; // return last correct measurement
}
_firstReading = false;
Serial.print("Currtime: "); Serial.print(currentTime);
Serial.print(" Lasttime: "); Serial.print(_lastReadTime);
_lastReadTime = millis();
// zero-out the data
_data[0] = _data[1] = _data[2] = _data[3] = _data[4] = 0;
// now pull it low for ~20 milliseconds
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
noInterrupts();
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
pinMode(_pin, INPUT);
// read in timings
for (i = 0; i < MAXTIMINGS; i++) {
counter = 0;
while (digitalRead(_pin) == lastState) {
counter++;
delayMicroseconds(1);
if (counter == 255) {
break;
}
}
lastState = digitalRead(_pin);
if (counter == 255) {
break;
}
// ignore first 3 transitions
if ((i >= 4) && (i%2 == 0)) {
// shove each bit into the storage bytes
_data[j/8] <<= 1;
if (counter > _count) {
_data[j/8] |= 1;
}
j++;
}
}
interrupts();
// check we read 40 bits and that the checksum matches
if ((j >= 40) && (_data[4] == ((_data[0] + _data[1] + _data[2] + _data[3]) & 0xFF))) {
return true;
}
return false;
}