forked from google-research/DP-FTRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprivacy.py
223 lines (187 loc) · 9.17 KB
/
privacy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Privacy computation for DP-FTRL with given data order."""
from absl import app
import numpy as np
from typing import List
from collections import Counter
import json
def convert_gaussian_renyi_to_dp(sigma, delta, verbose=True):
"""
Convert from RDP to DP for a Gaussian mechanism.
:param sigma: the algorithm guarantees (alpha, alpha/(2*sigma^2))-RDP
:param delta: target DP delta
:param verbose: whether to print message
:return: the DP epsilon
"""
alphas = np.arange(1, 200, 0.1)[1:]
epss = alphas / 2 / sigma**2 - (np.log(delta*(alphas - 1)) - alphas * np.log(1 - 1/alphas)) / (alphas - 1)
idx = np.nanargmin(epss)
if verbose and idx == len(alphas) - 1:
print('The best alpha is the last one. Consider increasing the range of alpha.')
eps = epss[idx]
return eps
def get_total_sensitivity_sq_given_order(order):
"""
Get the squared sensitivity for a given order of batches.
Can be viewed as a general case for get_total_sensitivity_sq_same_order.
This function is not used in the privacy computation, as we operated in the case where the
data order is the same for every epoch.
:param order: a list representing the order of the batches, e.g. [0,1,2,1] means we use batch indexed with 0,1,2,1.
-1 indicates virtual step.
:return: squared sensitivity, squared_sensitivity with respect to all every batch
"""
# get first layer as a list of counters
layer = [Counter({node: 1}) for node in order]
# sensitivity_sq[i] will record the total sensitivity wrt batch i
sensitivity_sq_all = [0] * (max(order) + 1)
# update sensitivity_sq with a given layer
def update_sensitivity_sq(current_layer):
for node in current_layer:
for ss in node:
if ss != -1:
sensitivity_sq_all[ss] += node[ss] ** 2
update_sensitivity_sq(layer) # get sensitivity for the first layer
while len(layer) > 1:
layer_new = [] # merge every two consecutive nodes to get the next layer
length = len(layer)
for i in range(0, length, 2):
if i + 1 < length:
layer_new.append(layer[i] + layer[i + 1])
layer = layer_new
update_sensitivity_sq(layer)
return max(sensitivity_sq_all), sensitivity_sq_all
def get_total_sensitivity_sq_same_order(steps_per_epoch, epochs, extra_steps, mem_fn=None):
"""
Get the squared sensitivty for a tree where we fix the order of batches for all epochs.
:param steps_per_epoch: number of steps per epoch
:param epochs: number of epochs in the tree
:param extra_steps: number of virtual steps
:param mem_fn: if set, will write result to the file
:return: squared sensitivity, squared sensivity assuming no virtual steps,
squared sensitivity with respect to every batch
e.g. steps_per_epochs = 3 and epochs = 2, extra_steps = 2 means we have three batches b1, b2, b3,
and train w/ [b1, b2, b3, b1, b2, b3, +, +] where + means the extra steps.
We will enumerate through all nodes layer by layer in list "layer", and compute the sensitivty
with respect to every node in "sensitivity_sq".
"""
# to record the result to save computation
mem = json.load(open(mem_fn)) if mem_fn else {}
key = f'{steps_per_epoch},{epochs},{extra_steps}'
key_no_extra = f'{steps_per_epoch},{epochs},{0}'
if key in mem and key_no_extra in mem:
return mem[key], mem[key_no_extra], None
# get first layer as a list of counters, the keys are batches (indexed with non-negative numbers), counts are
# number of times the batch appears in the node
layer = []
for _ in range(epochs):
layer += [Counter({ss: 1}) for ss in range(steps_per_epoch)]
layer += [Counter({-1: 1}) for _ in range(extra_steps)] # extra steps denoted as -1
# sensitivity_sq[i] will record the total sensitivity wrt batch i
sensitivity_sq_all = [0] * steps_per_epoch
sensitivity_sq_all_no_extra = [0] * steps_per_epoch # will also compute sensitivity without extra
# update sensitivity_sq with a given layer
def update_sensitivity_sq(current_layer):
for node in current_layer:
has_extra = -1 in node
for ss in node:
if ss != -1:
sensitivity_sq_all[ss] += node[ss] ** 2
if not has_extra:
sensitivity_sq_all_no_extra[ss] += node[ss] ** 2
update_sensitivity_sq(layer) # get sensitivity for the first layer
while len(layer) > 1:
layer_new = [] # merge every two consecutive nodes to get the next layer
length = len(layer)
for i in range(0, length, 2):
if i + 1 < length:
layer_new.append(layer[i] + layer[i + 1])
del layer
layer = layer_new
update_sensitivity_sq(layer)
# save to file
if mem_fn:
mem[key] = max(sensitivity_sq_all)
mem[key_no_extra] = max(sensitivity_sq_all_no_extra)
with open(mem_fn, 'w') as f:
json.dump(mem, f, indent=4)
return max(sensitivity_sq_all), max(sensitivity_sq_all_no_extra), sensitivity_sq_all
def compute_epsilon_tree_restart_rdp_same_order_extra(num_batches: int, epochs_between_restarts: List[int],
noise: float, tree_completion: bool = True,
mem_fn: str = None):
"""
Compute the effective noise for DP-FTRL.
:param num_batches: number of batches per epoch
:param epochs_between_restarts: number of epochs between each restart, e.g. [2, 1] means epoch1, epoch2, restart, epoch3
:param noise: noise multiplier for each step
:param tree_completion: if true, use the tree completion trick which adds virtual steps to complete the binary tree
:param mem_fn: if set, will write result to the file
:return: the effective noise for DP-FTRL
"""
if noise < 1e-20:
return float('inf')
mem = {} # to record result to avoid computing the same setting twice
sensitivity_sq = 0 # total sensitivity^2, which is the sum over all "intervals" between each restarting
for i, epochs in enumerate(epochs_between_restarts):
if epochs == 0:
continue
if tree_completion and i < len(epochs_between_restarts) - 1:
# compute number of virtual steps
extra_steps = 2 ** (num_batches * epochs - 1).bit_length() - num_batches * epochs
else:
extra_steps = 0
key = (num_batches, epochs, extra_steps)
mem[key] = mem.get(key,
get_total_sensitivity_sq_same_order(num_batches, epochs, extra_steps, mem_fn)[0])
sensitivity_sq += mem[key]
effective_sigma = noise / np.sqrt(sensitivity_sq)
return effective_sigma
def compute_epsilon_tree(num_batches: int, epochs_between_restarts: List[int], noise: float, delta: float,
tree_completion: bool,
verbose=True, mem_fn=None):
"""
Compute epsilon value for DP-FTRL.
:param num_batches: number of batches per epoch
:param epochs_between_restarts: number of epochs between each restart, e.g. [2, 1] means epoch1, epoch2, restart, epoch3
:param noise: noise multiplier for each step
:param delta: target DP delta
:param tree_completion: if true, use the tree completion trick which adds virtual steps to complete the binary tree
:param verbose: whether to print message
:param mem_fn: if set, will write result to the file
:return: the DP epsilon for DP-FTRL
"""
if noise < 1e-20:
return float('inf')
effective_sigma = compute_epsilon_tree_restart_rdp_same_order_extra(num_batches, epochs_between_restarts, noise,
tree_completion, mem_fn)
eps = convert_gaussian_renyi_to_dp(effective_sigma, delta, verbose)
return eps
def main(_):
# An example for CIFAR-10 (50000 samples) with batch=500, restarting every 20 epochs for 100 epochs in total,
# noise=46.3, using the tree completion trick.
n = 50000
delta = 1e-5
batch = 250
epochs = 5
restart_every = 5
noise = 4.
tree_completion = True
num_batches = n // batch
epochs_between_restarts = [restart_every] * (epochs // restart_every)
eps = compute_epsilon_tree(num_batches, epochs_between_restarts, noise, delta, tree_completion)
print(f'n={n}, batch={batch}, epochs={epochs} with restarting every {restart_every} epochs',
f'noise={noise}, tree_completion={tree_completion}',
f'gives ({eps:.2f}, {delta})-DP')
if __name__ == '__main__':
app.run(main)