-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathgan.py
310 lines (289 loc) · 12 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
from __future__ import division
import theano
import theano.tensor as T
from net import L, Net, Output, get_convnet, get_deconvnet
class LearningModule(object):
modes = frozenset(('train', 'test'))
def set_mode(self, mode):
if mode not in self.modes:
raise ValueError('Unknown mode %s; should be in: %s'
% (mode, self.modes))
self.mode = mode
class Generator(LearningModule):
def __init__(self, args, dist, nc, z=None, source=None, mode='train',
bnkwargs={}, gen_transform=None):
N = self.net = Net(source=source, name='Generator')
self.set_mode(mode)
h_and_weights = dist.embed_data()
bn_use_ave = (mode == 'test')
self.data, _ = get_deconvnet(image_size=args.crop_resize,
name=args.gen_net)(h_and_weights, N=N,
nout=nc, size=args.gen_net_size, num_fc=args.net_fc,
fc_dims=args.net_fc_dims, nonlin=args.deconv_nonlin,
bn_use_ave=bn_use_ave, ksize=args.deconv_ksize, **bnkwargs)
if gen_transform is not None:
self.data = Output(gen_transform(self.data.value),
shape=self.data.shape)
class Featurizer(LearningModule):
def __init__(self, args, dist, X, gX, Y,
nc=3, ny=None, mode='train', bnkwargs={},
discrim_weight=0, encode_weight=0,
joint_discrim_weight=0, updater=None,
net_name=None, net_size=None,
extra_cond_real=None, extra_cond_gen=None,
is_discrim=False, name='Featurizer'):
self.X = X
self.gX = gX
self.Y = Y
self.name = name
self.args = args
self.nc = nc
self.bnkwargs = bnkwargs
self.set_mode(mode)
self.net = None
self.updater = updater
self.net_name = net_name
self.net_size = net_size
self._feats = {}
self.cond_real = extra_cond_real
self.cond_gen = extra_cond_gen
assert (self.cond_real is None) == (self.cond_gen is None)
self.cond = self.cond_real is not None
assert ((self.cond_real is None) and (self.cond_gen is None)) or \
len(self.cond_real) == len(self.cond_gen)
self.do_encode = bool(encode_weight or joint_discrim_weight)
self.is_discrim = is_discrim
if args.cat_inputs and not any(a is None for a in (self.X, self.gX)):
data_cat = L.Concat(self.X, self.gX, axis=0)
if self.cond:
weights = self.cond_real[1]
assert weights == self.cond_gen[1]
cond_cat = [L.Concat(zr, zg, axis=0) for zr, zg in
zip(self.cond_real[0], self.cond_gen[0])], weights
else:
cond_cat = None
h_cat = self.feats(data_cat, cond=cond_cat)
h_real, h_gen = L.Slice(h_cat, slice_point=[self.X.value.shape[0]],
axis=0)
else:
h_real, h_gen = (None if (x is None) else self.feats(x, cond=c)
for x, c in [(self.X, self.cond_real), (self.gX, self.cond_gen)])
assert self.net is not None
self.h_real, self.h_gen = h_real, h_gen
if args.classifier and h_real is not None:
self.labeler = labeler = MultilabelClassifier(self.net, ny)
loss = labeler.loss(h_real, Y)
assert labeler.W is not None
# pop W from the params to be trained separately at 'deploy' time
for w in reversed(labeler.W):
assert self.net._params.popitem()[1][0] == w
if args.classifier_deploy:
add_updates = self.net.add_deploy_updates
else:
add_updates = self.net.add_updates
add_updates(*updater(labeler.W, loss.mean()))
if discrim_weight:
self.add_discrim_loss(h_real, h_gen, weight=discrim_weight)
if self.do_encode:
self.encoder = encoder = Encoder(self.net, args, dist, self.Y,
X=self.X, updater=updater,
featurizer=self, bias=args.encode_out_bias)
encoder.gen_cost = g = encoder.real_loss(self.h_real)
encoder.real_cost = r = encoder.gen_loss(self.h_gen)
cost_terms = [x.mean() for x in [g, r] if x is not None]
if cost_terms:
encoder.cost = sum(cost_terms)
if encoder.real_cost is not None:
self.net.add_loss(encoder.real_cost,
weight=1, name='loss_real')
if encoder.gen_cost is not None:
self.net.add_loss(encoder.gen_cost,
weight=1, name='loss_gen')
else:
encoder.cost = None
def feats(self, image, cond=None):
assert self.cond == (cond is not None)
key = self.mode, image
if key in self._feats:
return self._feats[key]
args = self.args
if self.net is None:
N = self.net = Net(name=self.name)
else:
N = Net(source=self.net, name=self.name)
assert isinstance(image, Output)
fc_drop = 0 if (self.mode == 'test') else (
args.encode_net_fc_drop if
(self.do_encode and (args.encode_net_fc_drop is not None))
else args.net_fc_drop
)
fc_dims = (
args.encode_net_fc_dims if
(self.do_encode and (args.encode_net_fc_dims is not None))
else args.net_fc_dims
)
num_fc = (
args.encode_net_fc if
(self.do_encode and (args.encode_net_fc is not None))
else args.net_fc
)
nonlin = (
args.encode_nonlin if
(self.do_encode and (args.encode_nonlin is not None))
else args.conv_nonlin
)
bn_use_ave = (self.mode == 'test')
net = get_convnet(image_size=args.crop_resize, name=self.net_name)
kwargs = {}
kwargs.update(self.bnkwargs)
if args.cond_fc is not None:
kwargs.update(cond_num_fc=args.cond_fc)
if args.cond_fc_dims is not None:
kwargs.update(cond_fc_dims=args.cond_fc_dims)
if args.cond_fc_drop is not None:
kwargs.update(cond_fc_drop=args.cond_fc_drop)
if self.is_discrim and args.minibatch_layer_size is not None:
kwargs.update(minibatch_layer_size=args.minibatch_layer_size)
if self.is_discrim and args.cat_inputs:
kwargs.update(minibatch_layer_halves=True)
if self.is_discrim and args.post_minibatch_layer_dims is not None:
kwargs.update(post_minibatch_layer_dims=args.post_minibatch_layer_dims)
if self.net_size is None:
size = args.feat_net_size
else:
size = self.net_size
f, _ = net(image, cond=cond, N=N, size=size,
num_fc=num_fc, fc_dims=fc_dims, fc_drop=fc_drop,
nonlin=nonlin, bn_use_ave=bn_use_ave,
bn_separate=args.bn_separate, **kwargs)
self._feats[key] = f
return f
def add_discrim_loss(self, h_real, h_gen, weight=1, name='discrim'):
discrim = {}
assert not hasattr(self, name)
setattr(self, name, discrim)
discrim['discrim'] = d = BinaryClassifier(self.net)
def add_discrim_cost(h_y, prefix=''):
key = '%sloss' % prefix
cost = {}
for name, h, y in h_y:
if h is None: continue
loss = d.loss(h, y)
loss_name = '%s_%s' % (key, name)
self.net.add_loss(loss, name=loss_name)
self.net.add_agg_loss_term(loss_name, weight=weight/2, name=key)
h_y = ('real', h_real, 1), ('gen', h_gen, 0)
add_discrim_cost(h_y)
h_y_not = ((n, h, 1 - y) for n, h, y in h_y)
add_discrim_cost(h_y_not, prefix='opp_')
return discrim
class LinearPredictor(LearningModule):
def __init__(self, N, nout, stddev=0, bias=False):
self.nout = nout
self.stddev = stddev
self.bias = bias
self.W = None
self.b = None
self.N = N
self._preds = {}
def preds(self, feats):
key = feats
if key in self._preds:
return self._preds[key]
assert isinstance(feats, Output)
params_before = len(self.N.params())
if self.W is None:
preds = self.N.FC(feats, nout=self.nout, stddev=self.stddev)
else:
assert len(self.W) == 1
W = Output(self.W[0])
preds = self.N.FCMult(feats, W)
net_params = self.N.params()
num_new_params = len(net_params) - params_before
if self.W is None:
assert num_new_params >= 1
self.W = net_params[-num_new_params:]
else:
assert num_new_params == 0
if self.bias:
params_before = len(self.N.params())
if self.b is None:
preds = self.N.Bias(preds)
else:
preds = self.N.BiasAdd(preds, self.b, axis=1)
net_params = self.N.params()
num_new_params = len(net_params) - params_before
if self.b is None:
assert num_new_params == 1
self.b = Output(net_params[-1], shape=(self.nout,))
else:
assert num_new_params == 0
self._preds[key] = preds
return preds
class Encoder(LinearPredictor):
def __init__(self, N, args, dist, y, X=None, updater=None,
featurizer=None, bias=False):
self.N = N
self.args = args
self.dist = dist
self.y = y
# don't 0 initialize if discriminator conditioned on encoder output
stddev = None if args.joint_discrim_weight else 0
super(Encoder, self).__init__(N, nout=dist.recon_dim, stddev=stddev, bias=bias)
self.encode_gen = bool(args.encode_weight)
self.encode_real = args.encode_kldiv_real
self.X = X
self.updater = updater
self.featurizer = featurizer
def dist_recon_error(self, feats):
assert isinstance(feats, Output)
# generated image: compute reconstruction cost vs. real latent sample
z = self.preds(feats).value
cost = self.dist.weighted_recon_error(z)
return cost * self.args.encode_weight
def dist_kldiv_error(self, feats):
assert isinstance(feats, Output)
if not self.encode_real:
return 0
args, dist = self.args, self.dist
cost = 0
if args.encode_kldiv_real:
cost += args.encode_kldiv_real * dist.kl_divergence(feats.value)
# normalization by distribution dimension
if args.encode_normalize:
cost /= dist.norm_divisor()
return cost
def real_loss(self, real_feats):
error = None
if self.encode_real:
error = self.dist_kldiv_error(real_feats)
return error
def gen_loss(self, gen_feats):
error = None
if self.encode_gen:
error = self.dist_recon_error(gen_feats)
return error
class MultilabelClassifier(LinearPredictor):
def __init__(self, N, num_labels):
super(MultilabelClassifier, self).__init__(N, nout=num_labels)
def probs(self, feats):
preds = self.preds(feats)
return T.nnet.softmax(preds.value)
def acc(self, feats, label):
return (feats.argmax(axis=1) == label.value).mean()
def loss(self, feats, label):
probs = self.probs(feats)
return T.nnet.categorical_crossentropy(probs, label.value)
class BinaryClassifier(LinearPredictor):
def __init__(self, N):
super(BinaryClassifier, self).__init__(N, nout=1)
def probs(self, feats):
preds = self.preds(feats)
assert len(preds.shape) == 2
assert preds.shape[1] == 1
preds = self.N.Reshape(preds, shape=(-1,))
return T.nnet.sigmoid(preds.value)
def loss(self, feats, label):
probs = self.probs(feats)
return T.nnet.binary_crossentropy(probs, label)