-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictions.py
86 lines (73 loc) · 2.18 KB
/
predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Author: Jacob Dawson
#
# Note: this file ONLY works for the many-to-many architecture!
from venv import create
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import json
import sys
from constants import *
from architecture import *
def loadData():
with open('dataset.json', 'r') as f:
data = json.load(f)
X, Y = [], []
for line in data:
for i in range(0,len(line)-(2*step),skip_size):
d = i+step
e = d+step
X.append(line[i:d])
Y.append(line[d:e])
X = np.array(X).astype(np.float32)
Y = np.array(Y).astype(np.float32)
return X,Y
def main(plot=False):
rng = np.random.default_rng(seed)
X, Y = loadData()
#model = tf.keras.models.load_model('stock_lstm')
model = createModel()
model.load_weights('model.h5')
model.summary()
correct_assessments = 0
for i in range(num_assessments):
selection = rng.integers(0, len(X))
x = X[selection]
y_true = Y[selection]
y_pred = model(tf.expand_dims(x,0))[0]
x_plot = list()
for price, vol in x:
x_plot.append(price)
y_true_plot = list()
for price, vol in y_true:
y_true_plot.append(price)
y_pred_plot = list()
for price, vol in y_pred:
y_pred_plot.append(price)
if plot:
plt.plot(y_true_plot, color='red',label="Ground Truth")
plt.plot(y_pred_plot, color='blue',label="Prediction")
plt.legend(loc='upper left')
plt.show()
# determine if the lstm predicted in the correct direction:
realStockClimbed = (x_plot[-1] < y_true_plot[-1])
predictionClimbed = (x_plot[-1] < y_pred_plot[-1])
if(realStockClimbed==predictionClimbed):
correct_assessments+=1
if((i%(num_assessments//10))==0):
print("Iteration", i, "out of", num_assessments)
print("Our LSTM was correct",
str((correct_assessments/num_assessments)*100.0) + "% of the time!"
)
if __name__ == '__main__':
print("Intended usage:")
print("python make_sequence_prediction.py [displayPlots?]")
plotBool = False
try:
plotBool = (sys.argv[1].lower() in ['yes', 'plot', 'true'])
except:
pass
print("\n#################################################################")
print("Displaying plots =", plotBool)
print("\n#################################################################")
main(plotBool)