-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
63 lines (56 loc) · 1.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Author: Jacob Dawson
# This file just contains a few numpy/tensorflow functions
# I need to understand in order to get the rest of the system
# to work. You can safely ignore all of this.
#import numpy as np
#import tensorflow as tf
#from tensorflow import keras
#from constants import *
#import imageio
'''def hasNan(x, number):
if tf.math.reduce_any((tf.math.is_nan(x))):
print(number, "has a nan!")
return x
a=tf.cast([1,2,np.nan,6.9,5.20,np.nan], tf.float16)
print(tf.math.multiply_no_nan(a, tf.dtypes.cast(tf.math.logical_not(tf.math.is_nan(a)), dtype=tf.float16)))
print(hasNan(a, 1))'''
'''a=tf.cast([-0.2,-20.0,256.0,125.0,300.0], tf.float16)
def makeImg(x):
min = tf.reduce_min(x)
if (min < 0):
x += tf.math.abs(min)
max = tf.reduce_max(x)
x = (x/max) * 255.0
return x
print(makeImg(a))
'''
'''
raw_imgs = keras.utils.image_dataset_from_directory(
"raw_imgs/",
labels = None,
color_mode = 'rgb',
batch_size = batch_size,
image_size = (image_size, image_size),
shuffle=True,
interpolation='bilinear',
seed = seed
)
cookiecut_raw_imgs = keras.utils.image_dataset_from_directory(
"cookiecut_raw_imgs/",
labels = None,
color_mode = 'rgb',
batch_size = batch_size,
image_size = (image_size, image_size),
shuffle=True,
interpolation='bilinear',
seed = seed
)
# and combine the cookiecut images with the cropped/zoomed ones:
raw_imgs = raw_imgs.concatenate(cookiecut_raw_imgs)
raw_imgs = raw_imgs.shuffle(100, seed=seed)
for i in range(10):
random_selection = raw_imgs.take(1)
raw_images = list(random_selection.as_numpy_iterator())[0]
raw_image = tf.convert_to_tensor(raw_images[0],dtype=tf.float32)
raw_image = raw_image.numpy().astype(np.uint8)
imageio.imwrite('checkpoint_imgs/'+str(i)+'.png', raw_image)'''