-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfClassifier.py
80 lines (70 loc) · 2.53 KB
/
tfClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Author: Jacob Dawson
#
# Goal: make a nn to classify the images of the galaxy zoo dataset!
###############################################################################
# imports and constants
#import pandas as pd
#import numpy as np
from constants import *
from architecture import *
from preprocess import preprocess
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
autotune = tf.data.experimental.AUTOTUNE
tf.random.set_seed(seed)
keras.mixed_precision.set_global_policy('mixed_float16')
# note: preprocessing done in preprocess.py. We return only what we intend to
# use here.
ds, ds_valid, x_train_shape, x_test_shape = preprocess(trainingCsv)
###############################################################################
# Model time!
network = convNet()
network.summary()
network.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learnRate),
loss=tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.RootMeanSquaredError(), 'accuracy'],
#run_eagerly=True,
)
# use this code if you have a prepared checkpoint to use for output:
checkpoint = None
if checkpoint!=None:
network.built=True
network.load_weights(checkpoint)
print("Checkpoint loaded, skipping training.")
class EveryKCallback(keras.callbacks.Callback):
def __init__(self,epoch_interval=epoch_interval):
self.epoch_interval = epoch_interval
def on_epoch_begin(self,epoch,logs=None):
if ((epoch % self.epoch_interval)==0):
self.model.save_weights("ckpts/ckpt"+str(epoch), overwrite=True, save_format='h5')
#self.model.save('network',overwrite=True)
history = network.fit(
ds,
epochs=epochs,
verbose=1,
callbacks=[EveryKCallback(epoch_interval=2)], # custom callbacks here!
shuffle=False,
steps_per_epoch=x_train_shape[0]//batch_size,
#use_multiprocessing=True,
#workers=8,
validation_steps=x_test_shape[0]//batch_size,
validation_data=ds_valid,
)
network.save_weights("ckpts/finished", overwrite=True, save_format='h5')
network.save('network',overwrite=True)
def visualize_loss(history, title):
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(len(loss))
plt.figure()
plt.plot(epochs, loss, "b", label="Training loss")
plt.plot(epochs, val_loss, "r", label="Validation loss")
plt.title(title)
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.savefig('trainingHistory.png', dpi=600)
#plt.show()
visualize_loss(history, "Training and Validation Loss")