-
Notifications
You must be signed in to change notification settings - Fork 408
/
Copy pathanalyze_cnn_benchmark_results.py
127 lines (100 loc) · 3.8 KB
/
analyze_cnn_benchmark_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json, os, argparse, itertools, math
from collections import defaultdict
parser = argparse.ArgumentParser()
parser.add_argument('--results_dir', default='outputs')
parser.add_argument('--include_std', default=0)
args = parser.parse_args()
# Maps the cuDNN version reported by torch.cudnn to a more friendly string
cudnn_map = {
5005: '5.0.05',
5105: '5.1.05',
5110: '5.1.10',
4007: '4.0.07',
'none': 'None',
}
# Maps the GPU name reported by the driver to a more friendly string
gpu_name_map = {
'Tesla P100-SXM2-16GB': 'Tesla P100',
'TITAN X': 'Pascal Titan X',
'GeForce GTX TITAN X': 'Maxwell Titan X',
'GeForce GTX 1080': 'GTX 1080',
'GeForce GTX 1080 Ti': 'GTX 1080 Ti',
'cpu': 'CPU: Dual Xeon E5-2630 v3',
}
def main(args):
# Load all the results
results = []
for dirpath, dirnames, fns in os.walk(args.results_dir):
for fn in fns:
if not fn.endswith('.json'): continue
with open(os.path.join(dirpath, fn), 'r') as f:
results.append(json.load(f))
all_values = defaultdict(set)
keyed_results = {}
for result in results:
gpu_name = result['gpu_name']
cudnn_version = result['cudnn_version']
model = result['opt']['model_t7']
batch_size = result['opt']['batch_size']
im_width = result['opt']['image_width']
im_height = result['opt']['image_height']
input_size = '%d x 3 x %d x %d' % (batch_size, im_height, im_width)
model = os.path.splitext(os.path.basename(model))[0]
keyed_results[(gpu_name, cudnn_version, model)] = result
all_values['gpu_name'].add(gpu_name)
all_values['cudnn_version'].add(cudnn_version)
all_values['model'].add(model)
all_values['input_size'].add(input_size)
for k, vs in all_values.iteritems():
print k
for v in vs:
print ' %s' % v
markdown_tables = {}
for model in all_values['model']:
for input_size in all_values['input_size']:
table_header = '|GPU|cuDNN|Forward (ms)|Backward (ms)|Total (ms)|'
table_header2 = '|---|---|---:|---:|---:|'
table_lines = {}
for gpu_name in all_values['gpu_name']:
for cudnn_version in all_values['cudnn_version']:
k = (gpu_name, cudnn_version, model)
if k not in keyed_results: continue
result = keyed_results[k]
cudnn_str = cudnn_map[cudnn_version]
cudnn_str = cudnn_map.get(cudnn_version, cudnn_version)
gpu_str = gpu_name_map.get(gpu_name, gpu_name)
f_mean = mean(result['forward_times']) * 1000
f_std = std(result['forward_times']) * 1000
b_mean = mean(result['backward_times']) * 1000
b_std = std(result['backward_times']) * 1000
t_mean = mean(result['total_times']) * 1000
t_std = std(result['total_times']) * 1000
if args.include_std == 1:
f_str = '%.2f += %.2f' % (f_mean, f_std)
b_str = '%.2f += %.2f' % (b_mean, b_std)
t_str = '%.2f += %.2f' % (t_mean, t_std)
else:
f_str = '%.2f' % f_mean
b_str = '%.2f' % b_mean
t_str = '%.2f' % t_mean
table_lines[t_mean] = '|%s|%s|%s|%s|%s|' % (
gpu_str, cudnn_str, f_str, b_str, t_str)
table_lines = [table_lines[k] for k in sorted(table_lines)]
table_lines = [table_header, table_header2] + table_lines
model_batch_str = '%s (input %s)' % (model, input_size)
markdown_tables[model_batch_str] = table_lines
for model, table_lines in markdown_tables.iteritems():
print model
for line in table_lines:
print line
print
def mean(xs):
return float(sum(xs)) / len(xs)
def std(xs):
m = mean(xs)
diffs = [x - m for x in xs]
var = sum(d ** 2.0 for d in diffs) / (len(xs) - 1)
return math.sqrt(var)
if __name__ == '__main__':
args = parser.parse_args()
main(args)