Profesor: Edwin Montoya M. – [email protected]
-
Contador de palabras en archivos texto en Java
-
Se tiene el programa ejemplo: WordCount.java, el cual despues de compilarse en la version hadoop 2.7.3, genera un jar wc.jar, el cual será el que finalmente se ejecute.
-
Descargarlo, compilarlo y generar el jar (wc.jar)
user@master$ cd 02-mapreduce user@master$ sh wc-gen-jar.sh
user@master$ hadoop jar wc.jar WordCount hdfs:///datasets/gutenberg-txt-es/*.txt hdfs:///user/<username>/data_out1
(puede tomar varios minutos)
- el comando hadoop se este abandonando por yarn:
user@master$ yarn jar wc.jar WordCount hdfs:///datasets/gutenberg-txt-es/*.txt hdfs:///user/<username>/data_out2
//
// WordCount.java
//
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
-
Hay varias librerias de python para acceder a servicios MapReduce en Hadoop
-
Se usará MRJOB (https://pythonhosted.org/mrjob/)
-
Se puede emplear una version de python 2.x o 3.x, del sistema (como root) o con un manejador de versiones de node (pyenv o virtualenv).
-
Como parte del sistema, se instalará mrjob así:
user@master$ sudo yum install python-pip user@master$ sudo pip install --upgrade pip user@master$ sudo pip install mrjob
- Si utilizará un manejador de versiones de python, puede ser así:
primero instalar pyenv (https://github.com/pyenv/pyenv-installer)
user@master$ curl -L https://raw.githubusercontent.com/pyenv/pyenv-installer/master/bin/pyenv-installer | bash user@master$ pyenv update user@master$ pyenv install 2.7.13 user@master$ pyenv local 2.7.13 user@master$ pip install mrjob
- Probar mrjob python local:
user@master$ cd 02-mapreduce user@master$ python wordcount-mr.py /datasets/gutenberg-txt-es/1*.txt
- Ejecutar mrjob python en Hadoop con datos en hdfs:
Crear variable de ambiente: HADOOP_STREAMING_HOME para HORTONWORKS:
user@master$ export HADOOP_STREAMING_HOME=/usr/hdp/current/hadoop-mapreduce-client
Crear variable de ambiente: HADOOP_STREAMING_HOME para CLOUDERA CDH 5.14:
user@master$ export HADOOP_STREAMING_HOME=/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24
Ejecutar:
user@master$ python wordcount-mr.py hdfs:///datasets/gutenberg-txt-es/*.txt -r hadoop --output-dir hdfs:///user/<username>/data_out1 --hadoop-streaming-jar $HADOOP_STREAMING_HOME/hadoop-streaming.jar
- el directorio 'data_out1' no puede existir)