Skip to content

Latest commit

 

History

History
executable file
·
71 lines (62 loc) · 5.92 KB

index.md

File metadata and controls

executable file
·
71 lines (62 loc) · 5.92 KB

Index

Formalizations and Examples

Formalizations that are listed as Haskell structures are a formalization of that structure in the category Set reflecting the way it is encoded in Haskell.

Formalization Module
Haskell Functor Haskell.Functor
Haskell Applicative Haskell.Applicative
Haskell Monad Haskell.Monad
Haskell Graded Applicative Haskell.Parameterized.Graded.Applicative
Haskell Graded Monad Haskell.Parameterized.Graded.Monad
Haskell Indexed Applicative Haskell.Parameterized.Indexed.Applicative
Haskell Indexed Monad Haskell.Parameterized.Indexed.Monad
Category Theory.Category.Definition
Monoidal Category Theory.Category.Monoidal
Functor Theory.Functor.Definition
Monoidal Functor Theory.Functor.Monoidal
Lax Monoidal Functor Theory.Functor.Monoidal
Graded Lax Monoidal Functor Theory.Haskell.Parameterized.Graded.LaxMonoidalFunctor
Indexed Lax Monoidal Functor Theory.Haskell.Parameterized.Indexed.LaxMonoidalFunctor
Monad Theory.Monad.Definition
Graded Monad Theory.Haskell.Parameterized.Graded.Monad
Indexed Monad Theory.Haskell.Parameterized.Indexed.Monad
Kleisli Triple Theory.Monad.Kleisli
Relative Monad Theory.Monad.Relative
Atkey's Parameterized Monad Theory.Monad.Atkey
Natural Transformation Theory.Natural.Transformation
Natural Isomorphism Theory.Natural.Isomorphism
Strict 2-Category Theory.TwoCategory.Definition
Bicategory Theory.TwoCategory.Bicategory
Lax 2-Functor (on Strict 2-Categories) Theory.TwoFunctor.Definition
Lax 2-Functor (constant 0-Cell mapping) Theory.TwoFunctor.ConstZeroCell
Monoid Theory.Monoid

Relationships

An isomorphism or implication between structures listed here just indicates that there are cases where these implications hold, but they are not necessarily generally true.

Legend:

  • A ≅ B -- Proof that A isomorphic to B.
  • A ⇒ B -- Proof that A implies an instance of B. Can be interpreted as A is a subset of B.

Index: