You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
During the flow_generator = flow_generator_train(cfg) step, after 70% of epoch 0 is achieved, I get this kornia augmentation error.
ERROR
Epoch 0: 70%
46/66 [01:43<00:44, 2.24s/it, loss=0.0427, v_num=0]
IndexError Traceback (most recent call last)
[<ipython-input-19-1d7b632134f1>](https://localhost:8080/#) in <cell line: 1>()
----> 1 flow_generator = flow_generator_train(cfg)
51 frames
[/usr/local/lib/python3.10/dist-packages/deepethogram/flow_generator/train.py](https://localhost:8080/#) in flow_generator_train(cfg)
77
78 trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
---> 79 trainer.fit(lightning_module)
80 return flow_generator
81
....
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/_2d/base.py](https://localhost:8080/#) in generate_transformation_matrix(self, input, params, flags)
81 else:
82 trans_matrix_A = self.identity_matrix(in_tensor)
---> 83 trans_matrix_B = self.compute_transformation(in_tensor[to_apply], params=params, flags=flags)
84
85 if is_autocast_enabled():
IndexError: The shape of the mask [352] at index 0 does not match the shape of the indexed tensor [308, 3, 224, 224] at index 0
INSTALLED LIBRARIES
I installed opencv because the colab did not run without cv2.
print('\n=================ORIGINAL DEG INSTALLATION CODE=========================\n')
!pip uninstall -y opencv-python
print('\n==========================================\n')
!pip install --upgrade deepethogram
print('\n==========================================\n')
!pip uninstall -y torchtext # this is for pytorch lightning compatibility
print('\n======================DEBUGGING Karin====================\n')
#Issue GitHub: The "gpus" argument is no longer present in the newest versions of pytorch-lightning
#You need to install an older version, for example pytorch-lightning==1.5.10
!pip install pytorch-lightning==1.5.10
print('\n======================DEBUGGING Karin: add opencv====================\n')
!pip install opencv-python
FULL ERROR
[2023-10-22 13:52:44,519] INFO [deepethogram.projects.convert_config_paths_to_absolute:1135] cwd in absolute: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/test3_deepethogram/models/231022_133620_flow_generator_train
[2023-10-22 13:52:44,525] INFO [deepethogram.projects.convert_config_paths_to_absolute:1178] after absolute: {'class_names': ['background', 'face_groom', 'body_groom', 'dig', 'scratch'], 'config_file': '/content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/project_config.yaml', 'data_path': '/content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/DATA', 'labeler': None, 'model_path': '/content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models', 'name': 'testing', 'path': '/content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram', 'pretrained_path': '/content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/pretrained_models'}
[2023-10-22 13:52:44,548] INFO [deepethogram.flow_generator.train.flow_generator_train:54] args: /usr/local/lib/python3.10/dist-packages/colab_kernel_launcher.py -f /root/.local/share/jupyter/runtime/kernel-f6ad82e8-3203-4d02-9752-8ad350edbc18.json
[2023-10-22 13:52:44,552] INFO [deepethogram.flow_generator.train.flow_generator_train:62] configuration used ~~~~~
[2023-10-22 13:52:44,563] INFO [deepethogram.flow_generator.train.flow_generator_train:63] split:
reload: true
file: null
train_val_test:
- 0.8
- 0.2
- 0.0
compute:
fp16: false
num_workers: 2
batch_size: 32
min_batch_size: 8
max_batch_size: 512
distributed: false
gpu_id: 0
dali: false
metrics_workers: 0
reload:
overwrite_cfg: false
latest: false
notes: null
log:
level: info
augs:
brightness: 0.25
contrast: 0.1
hue: 0.1
saturation: 0.1
color_p: 0.5
grayscale: 0.5
crop_size: null
resize:
- 224
- 224
dali: false
random_resize: false
pad: null
LR: 0.5
UD: 0.5
degrees: 10
normalization:
'N': 13125000
mean:
- 0.02004539966386554
- 0.03199181684407095
- 0.025961602390289447
std:
- 0.02522799020705389
- 0.05607626687605602
- 0.03893020334412448
train:
lr: 0.0001
scheduler: plateau
num_epochs: 10
steps_per_epoch:
train: 1000
val: 200
test: 20
min_lr: 5.0e-07
stopping_type: learning_rate
milestones:
- 50
- 100
- 150
- 200
- 250
- 300
weight_loss: true
patience: 3
early_stopping_begins: 0
viz_metrics: true
viz_examples: 10
reduction_factor: 0.1
loss_weight_exp: 1.0
loss_gamma: 1.0
label_smoothing: 0.05
oversampling_exp: 0.0
regularization:
style: l2_sp
alpha: 1.0e-05
beta: 0.001
flow_generator:
type: flow_generator
flow_loss: MotionNet
flow_max: 10
input_images: 11
flow_sparsity: false
smooth_weight_multiplier: 1.0
sparsity_weight: 0.0
loss: MotionNet
max: 5
n_rgb: 11
arch: TinyMotionNet
weights: pretrained
'n': 10
feature_extractor:
arch: resnet18
n_flow: 10
n_rgb: 1
project:
class_names:
- background
- face_groom
- body_groom
- dig
- scratch
config_file: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version
230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/project_config.yaml
data_path: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version
230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/DATA
labeler: null
model_path: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version
230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models
name: testing
path: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers
requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram
pretrained_path: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper
version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/pretrained_models
sequence:
filter_length: 15
run:
type: train
model: flow_generator
dir: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers
requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/231022_135244_flow_generator_train
[2023-10-22 13:52:49,197] INFO [deepethogram.flow_generator.train.flow_generator_train:67] Total trainable params: 1,951,784
[2023-10-22 13:52:51,772] INFO [deepethogram.projects.get_weightfile_from_cfg:1068] loading pretrained weights: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/pretrained_models/200221_115158_TinyMotionNet/checkpoint.pt
[2023-10-22 13:52:51,776] INFO [deepethogram.utils.load_state:341] loading from checkpoint file /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/pretrained_models/200221_115158_TinyMotionNet/checkpoint.pt...
reloading weights...
[2023-10-22 13:52:52,300] INFO [deepethogram.flow_generator.train.get_metrics:364] key metric is SSIM
[2023-10-22 13:52:52,325] INFO [deepethogram.data.augs.get_gpu_transforms:246] GPU transforms: {'train': Sequential(
(0): ToFloat()
(1): VideoSequential(
(RandomHorizontalFlip_0): RandomHorizontalFlip(p=0.5, p_batch=1.0, same_on_batch=False)
(RandomVerticalFlip_1): RandomVerticalFlip(p=0.5, p_batch=1.0, same_on_batch=False)
(RandomRotation_2): RandomRotation(degrees=10, p=0.5, p_batch=1.0, same_on_batch=False, resample=bilinear, align_corners=True)
(ColorJitter_3): ColorJitter(brightness=0.25, contrast=0.1, saturation=0.1, hue=0.1, p=0.5, p_batch=1.0, same_on_batch=False)
(RandomGrayscale_4): RandomGrayscale(p=0.5, p_batch=1.0, same_on_batch=False)
)
(2): NormalizeVideo()
(3): StackClipInChannels()
), 'val': Sequential(
(0): ToFloat()
(1): NormalizeVideo()
(2): StackClipInChannels()
), 'test': Sequential(
(0): ToFloat()
(1): NormalizeVideo()
(2): StackClipInChannels()
), 'denormalize': Sequential(
(0): UnstackClip()
(1): DenormalizeVideo()
)}
[2023-10-22 13:52:52,326] INFO [deepethogram.base.__init__:95] scheduler mode: min
[2023-10-22 13:52:52,452] INFO [deepethogram.losses.get_regularization_loss:204] Regularization: L2_SP. Pretrained file: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/pretrained_models/200221_115158_TinyMotionNet/checkpoint.pt alpha: 1e-05 beta: 0.001
[2023-10-22 13:52:52,507] INFO [deepethogram.flow_generator.losses.__init__:178] Using MotionNet Loss with settings: smooth_weights: [0.01, 0.02, 0.04, 0.08, 0.16] flow_sparsity: False sparsity_weight: 0.0
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/connectors/callback_connector.py:90: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=1)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.
rank_zero_deprecation(
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/connectors/data_connector.py:88: LightningDeprecationWarning: `reload_dataloaders_every_epoch` is deprecated in v1.4 and will be removed in v1.6. Please use `reload_dataloaders_every_n_epochs` in Trainer.
rank_zero_deprecation(
[2023-10-22 13:52:52,517] INFO [pytorch_lightning.utilities.distributed._info:93] GPU available: True, used: True
[2023-10-22 13:52:52,519] INFO [pytorch_lightning.utilities.distributed._info:93] TPU available: False, using: 0 TPU cores
[2023-10-22 13:52:52,523] INFO [pytorch_lightning.utilities.distributed._info:93] IPU available: False, using: 0 IPUs
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/configuration_validator.py:275: LightningDeprecationWarning: The `on_keyboard_interrupt` callback hook was deprecated in v1.5 and will be removed in v1.7. Please use the `on_exception` callback hook instead.
rank_zero_deprecation(
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/configuration_validator.py:291: LightningDeprecationWarning: Base `Callback.on_train_batch_start` hook signature has changed in v1.5. The `dataloader_idx` argument will be removed in v1.7.
rank_zero_deprecation(
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/configuration_validator.py:291: LightningDeprecationWarning: Base `Callback.on_train_batch_end` hook signature has changed in v1.5. The `dataloader_idx` argument will be removed in v1.7.
rank_zero_deprecation(
[2023-10-22 13:52:52,593] INFO [pytorch_lightning.accelerators.gpu.set_nvidia_flags:59] LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
[2023-10-22 13:52:52,621] INFO [deepethogram.base.configure_optimizers:227] learning rate: 0.0001
[2023-10-22 13:52:52,624] WARNING [pytorch_lightning.loggers.tensorboard._get_next_version:298] Missing logger folder: /content/drive/MyDrive/Research/Schneider lab/Paper/Karin paper version 230911/Reviewers requests/Fig 5 Automated behavior classification/DeepEthogram/testingdeg_deepethogram/models/231022_135244_flow_generator_train/default
[2023-10-22 13:52:52,630] INFO [pytorch_lightning.callbacks.model_summary.summarize:73]
| Name | Type | Params
--------------------------------------------
0 | model | TinyMotionNet | 2.0 M
1 | criterion | MotionNetLoss | 0
--------------------------------------------
2.0 M Trainable params
0 Non-trainable params
2.0 M Total params
7.807 Total estimated model params size (MB)
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/data_loading.py:659: UserWarning: Your `val_dataloader` has `shuffle=True`, it is strongly recommended that you turn this off for val/test/predict dataloaders.
rank_zero_warn(
Epoch 0: 70%
46/66 [01:43<00:44, 2.24s/it, loss=0.0427, v_num=0]
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
[<ipython-input-19-1d7b632134f1>](https://localhost:8080/#) in <cell line: 1>()
----> 1 flow_generator = flow_generator_train(cfg)
51 frames
[/usr/local/lib/python3.10/dist-packages/deepethogram/flow_generator/train.py](https://localhost:8080/#) in flow_generator_train(cfg)
77
78 trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
---> 79 trainer.fit(lightning_module)
80 return flow_generator
81
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in fit(self, model, train_dataloaders, val_dataloaders, datamodule, train_dataloader, ckpt_path)
738 )
739 train_dataloaders = train_dataloader
--> 740 self._call_and_handle_interrupt(
741 self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
742 )
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in _call_and_handle_interrupt(self, trainer_fn, *args, **kwargs)
683 """
684 try:
--> 685 return trainer_fn(*args, **kwargs)
686 # TODO: treat KeyboardInterrupt as BaseException (delete the code below) in v1.7
687 except KeyboardInterrupt as exception:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in _fit_impl(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)
775 # TODO: ckpt_path only in v1.7
776 ckpt_path = ckpt_path or self.resume_from_checkpoint
--> 777 self._run(model, ckpt_path=ckpt_path)
778
779 assert self.state.stopped
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in _run(self, model, ckpt_path)
1197
1198 # dispatch `start_training` or `start_evaluating` or `start_predicting`
-> 1199 self._dispatch()
1200
1201 # plugin will finalized fitting (e.g. ddp_spawn will load trained model)
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in _dispatch(self)
1277 self.training_type_plugin.start_predicting(self)
1278 else:
-> 1279 self.training_type_plugin.start_training(self)
1280
1281 def run_stage(self):
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py](https://localhost:8080/#) in start_training(self, trainer)
200 def start_training(self, trainer: "pl.Trainer") -> None:
201 # double dispatch to initiate the training loop
--> 202 self._results = trainer.run_stage()
203
204 def start_evaluating(self, trainer: "pl.Trainer") -> None:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in run_stage(self)
1287 if self.predicting:
1288 return self._run_predict()
-> 1289 return self._run_train()
1290
1291 def _pre_training_routine(self):
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py](https://localhost:8080/#) in _run_train(self)
1317 self.fit_loop.trainer = self
1318 with torch.autograd.set_detect_anomaly(self._detect_anomaly):
-> 1319 self.fit_loop.run()
1320
1321 def _run_evaluate(self) -> _EVALUATE_OUTPUT:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/base.py](https://localhost:8080/#) in run(self, *args, **kwargs)
143 try:
144 self.on_advance_start(*args, **kwargs)
--> 145 self.advance(*args, **kwargs)
146 self.on_advance_end()
147 self.restarting = False
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/fit_loop.py](https://localhost:8080/#) in advance(self)
232
233 with self.trainer.profiler.profile("run_training_epoch"):
--> 234 self.epoch_loop.run(data_fetcher)
235
236 # the global step is manually decreased here due to backwards compatibility with existing loggers
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/base.py](https://localhost:8080/#) in run(self, *args, **kwargs)
143 try:
144 self.on_advance_start(*args, **kwargs)
--> 145 self.advance(*args, **kwargs)
146 self.on_advance_end()
147 self.restarting = False
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py](https://localhost:8080/#) in advance(self, *args, **kwargs)
191
192 with self.trainer.profiler.profile("run_training_batch"):
--> 193 batch_output = self.batch_loop.run(batch, batch_idx)
194
195 self.batch_progress.increment_processed()
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/base.py](https://localhost:8080/#) in run(self, *args, **kwargs)
143 try:
144 self.on_advance_start(*args, **kwargs)
--> 145 self.advance(*args, **kwargs)
146 self.on_advance_end()
147 self.restarting = False
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/batch/training_batch_loop.py](https://localhost:8080/#) in advance(self, batch, batch_idx)
86 if self.trainer.lightning_module.automatic_optimization:
87 optimizers = _get_active_optimizers(self.trainer.optimizers, self.trainer.optimizer_frequencies, batch_idx)
---> 88 outputs = self.optimizer_loop.run(split_batch, optimizers, batch_idx)
89 else:
90 outputs = self.manual_loop.run(split_batch, batch_idx)
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/base.py](https://localhost:8080/#) in run(self, *args, **kwargs)
143 try:
144 self.on_advance_start(*args, **kwargs)
--> 145 self.advance(*args, **kwargs)
146 self.on_advance_end()
147 self.restarting = False
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in advance(self, batch, *args, **kwargs)
213
214 def advance(self, batch: Any, *args: Any, **kwargs: Any) -> None: # type: ignore[override]
--> 215 result = self._run_optimization(
216 batch,
217 self._batch_idx,
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in _run_optimization(self, split_batch, batch_idx, optimizer, opt_idx)
264 # gradient update with accumulated gradients
265 else:
--> 266 self._optimizer_step(optimizer, opt_idx, batch_idx, closure)
267
268 result = closure.consume_result()
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in _optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
376
377 # model hook
--> 378 lightning_module.optimizer_step(
379 self.trainer.current_epoch,
380 batch_idx,
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/core/lightning.py](https://localhost:8080/#) in optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs)
1650
1651 """
-> 1652 optimizer.step(closure=optimizer_closure)
1653
1654 def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/core/optimizer.py](https://localhost:8080/#) in step(self, closure, **kwargs)
162 assert trainer is not None
163 with trainer.profiler.profile(profiler_action):
--> 164 trainer.accelerator.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/accelerators/accelerator.py](https://localhost:8080/#) in optimizer_step(self, optimizer, opt_idx, closure, model, **kwargs)
337 """
338 model = model or self.lightning_module
--> 339 self.precision_plugin.optimizer_step(model, optimizer, opt_idx, closure, **kwargs)
340
341 def optimizer_zero_grad(self, current_epoch: int, batch_idx: int, optimizer: Optimizer, opt_idx: int) -> None:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py](https://localhost:8080/#) in optimizer_step(self, model, optimizer, optimizer_idx, closure, **kwargs)
161 if isinstance(model, pl.LightningModule):
162 closure = partial(self._wrap_closure, model, optimizer, optimizer_idx, closure)
--> 163 optimizer.step(closure=closure, **kwargs)
164
165 def _track_grad_norm(self, trainer: "pl.Trainer") -> None:
[/usr/local/lib/python3.10/dist-packages/torch/optim/optimizer.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
371 )
372
--> 373 out = func(*args, **kwargs)
374 self._optimizer_step_code()
375
[/usr/local/lib/python3.10/dist-packages/torch/optim/optimizer.py](https://localhost:8080/#) in _use_grad(self, *args, **kwargs)
74 torch.set_grad_enabled(self.defaults['differentiable'])
75 torch._dynamo.graph_break()
---> 76 ret = func(self, *args, **kwargs)
77 finally:
78 torch._dynamo.graph_break()
[/usr/local/lib/python3.10/dist-packages/torch/optim/adam.py](https://localhost:8080/#) in step(self, closure)
141 if closure is not None:
142 with torch.enable_grad():
--> 143 loss = closure()
144
145 for group in self.param_groups:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/plugins/precision/precision_plugin.py](https://localhost:8080/#) in _wrap_closure(self, model, optimizer, optimizer_idx, closure)
146 consistent with the ``PrecisionPlugin`` subclasses that cannot pass ``optimizer.step(closure)`` directly.
147 """
--> 148 closure_result = closure()
149 self._after_closure(model, optimizer, optimizer_idx)
150 return closure_result
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in __call__(self, *args, **kwargs)
158
159 def __call__(self, *args: Any, **kwargs: Any) -> Optional[Tensor]:
--> 160 self._result = self.closure(*args, **kwargs)
161 return self._result.loss
162
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in closure(self, *args, **kwargs)
140 def closure(self, *args: Any, **kwargs: Any) -> ClosureResult:
141 with self._profiler.profile("training_step_and_backward"):
--> 142 step_output = self._step_fn()
143
144 if step_output.closure_loss is None:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loops/optimization/optimizer_loop.py](https://localhost:8080/#) in _training_step(self, split_batch, batch_idx, opt_idx)
433 lightning_module._current_fx_name = "training_step"
434 with self.trainer.profiler.profile("training_step"):
--> 435 training_step_output = self.trainer.accelerator.training_step(step_kwargs)
436 self.trainer.training_type_plugin.post_training_step()
437
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/accelerators/accelerator.py](https://localhost:8080/#) in training_step(self, step_kwargs)
217 """
218 with self.precision_plugin.train_step_context():
--> 219 return self.training_type_plugin.training_step(*step_kwargs.values())
220
221 def post_training_step(self) -> None:
[/usr/local/lib/python3.10/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py](https://localhost:8080/#) in training_step(self, *args, **kwargs)
211
212 def training_step(self, *args, **kwargs):
--> 213 return self.model.training_step(*args, **kwargs)
214
215 def post_training_step(self):
[/usr/local/lib/python3.10/dist-packages/deepethogram/flow_generator/train.py](https://localhost:8080/#) in training_step(self, batch, batch_idx)
180
181 def training_step(self, batch: dict, batch_idx: int):
--> 182 return self.common_step(batch, batch_idx, 'train')
183
184 def validation_step(self, batch: dict, batch_idx: int):
[/usr/local/lib/python3.10/dist-packages/deepethogram/flow_generator/train.py](https://localhost:8080/#) in common_step(self, batch, batch_idx, split)
161 """
162 # forward pass. images are returned because the forward pass runs augmentations on the gpu as well
--> 163 images, outputs = self(batch, split)
164 # actually reconstruct t0 using t1 and estimated optic flow
165 downsampled_t0, estimated_t0, flows_reshaped = self.reconstructor(images, outputs)
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
1519
1520 def _call_impl(self, *args, **kwargs):
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1528
1529 try:
[/usr/local/lib/python3.10/dist-packages/deepethogram/flow_generator/train.py](https://localhost:8080/#) in forward(self, batch, mode)
265 # lightning handles transfer to device
266 images = batch['images']
--> 267 images = self.apply_gpu_transforms(images, mode)
268
269 outputs = self.model(images)
[/usr/local/lib/python3.10/dist-packages/deepethogram/base.py](https://localhost:8080/#) in apply_gpu_transforms(self, images, mode)
214 def apply_gpu_transforms(self, images: torch.Tensor, mode: str) -> torch.Tensor:
215 with torch.no_grad():
--> 216 images = self.gpu_transforms[mode](images).detach()
217 return images
218
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
1519
1520 def _call_impl(self, *args, **kwargs):
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1528
1529 try:
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/container.py](https://localhost:8080/#) in forward(self, input)
213 def forward(self, input):
214 for module in self:
--> 215 input = module(input)
216 return input
217
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
1519
1520 def _call_impl(self, *args, **kwargs):
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1528
1529 try:
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/container/video.py](https://localhost:8080/#) in forward(self, input, params, extra_args)
336 params = self._params
337
--> 338 output = self.transform_inputs(input, params, extra_args=extra_args)
339
340 return output
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/container/video.py](https://localhost:8080/#) in transform_inputs(self, input, params, extra_args)
204 input = self._input_shape_convert_in(input, frame_num)
205
--> 206 input = super().transform_inputs(input, params, extra_args=extra_args)
207
208 input = self._input_shape_convert_back(input, frame_num)
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/container/base.py](https://localhost:8080/#) in transform_inputs(self, input, params, extra_args)
196 for param in params:
197 module = self.get_submodule(param.name)
--> 198 input = InputSequentialOps.transform(input, module=module, param=param, extra_args=extra_args)
199 return input
200
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/container/ops.py](https://localhost:8080/#) in transform(cls, input, module, param, extra_args)
157 def transform(cls, input: Tensor, module: Module, param: ParamItem, extra_args: Dict[str, Any] = {}) -> Tensor:
158 if isinstance(module, (_AugmentationBase, K.MixAugmentationBaseV2)):
--> 159 input = module(input, params=cls.get_instance_module_param(param), **extra_args)
160 elif isinstance(module, (K.container.ImageSequentialBase,)):
161 input = module.transform_inputs(input, params=cls.get_sequential_module_param(param), extra_args=extra_args)
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
1519
1520 def _call_impl(self, *args, **kwargs):
[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1528
1529 try:
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/base.py](https://localhost:8080/#) in forward(self, input, params, **kwargs)
208 params, flags = self._process_kwargs_to_params_and_flags(params, self.flags, **kwargs)
209
--> 210 output = self.apply_func(in_tensor, params, flags)
211 return self.transform_output_tensor(output, input_shape) if self.keepdim else output
212
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/_2d/base.py](https://localhost:8080/#) in apply_func(self, in_tensor, params, flags)
122 flags = self.flags
123
--> 124 trans_matrix = self.generate_transformation_matrix(in_tensor, params, flags)
125 output = self.transform_inputs(in_tensor, params, flags, trans_matrix)
126 self._transform_matrix = trans_matrix
[/usr/local/lib/python3.10/dist-packages/kornia/augmentation/_2d/base.py](https://localhost:8080/#) in generate_transformation_matrix(self, input, params, flags)
81 else:
82 trans_matrix_A = self.identity_matrix(in_tensor)
---> 83 trans_matrix_B = self.compute_transformation(in_tensor[to_apply], params=params, flags=flags)
84
85 if is_autocast_enabled():
IndexError: The shape of the mask [352] at index 0 does not match the shape of the indexed tensor [308, 3, 224, 224] at index 0
The text was updated successfully, but these errors were encountered:
karinmcode
changed the title
FlowGenerator error in COLAB related to kornia augmentation or pytorch lightning package
[COLAB] FlowGenerator error in COLAB related to kornia augmentation or pytorch lightning package
Oct 22, 2023
Hi,
I am using colab to try to train the test data (testing_deepethogram_archive.zip) provided on Github.
During the
flow_generator = flow_generator_train(cfg)
step, after 70% of epoch 0 is achieved, I get this kornia augmentation error.ERROR
INSTALLED LIBRARIES
I installed opencv because the colab did not run without cv2.
FULL ERROR
The text was updated successfully, but these errors were encountered: