Skip to content

Latest commit

 

History

History
119 lines (104 loc) · 6.68 KB

Read_Comprehension.md

File metadata and controls

119 lines (104 loc) · 6.68 KB

Implementations

Leadboard according to the papers and offincal implementations (sorted by F1)

Model EM F1 code paper
Match-LSTM with Ans-Ptr 60.5 70.7 ICLR17
Globally Normalized Reader 66.6 75.0 Tensorflow EMNLP17
MPCM 65.5 75.1 arxiv-16
RASOR 67.4 75.5 arxiv-16
DCN 66.2 75.9 ICLR17
BiDAF 68.0 77.3 Tensorflow ICLR17
SEDT 68.5 78.0 EMNLP17
Document Reader 69.5 78.8 Pytorch ACL17
FastQAExt 70.8 78.9 CoNLL17
ReasoNet 69.1 78.9 CNTK SIGKDD17
RNET1 71.1 79.5 ACL17
Smartnet 71.4 80.2 arxiv-17
RNET2 72.3 80.6 MS share
BiDAF + selfatt 72.1 81.1 Tensorflow arxiv-17
MneReader 71.8 81.2 arxiv-17
PhaseCond 72.1 81.4 arxiv-17
MEMEN 75.4 82.7 arxiv-17
QANet 73.6 82.7 ICLR18
FusionNet 76.0 83.9 Pytorch ICLR18
RaSoR + TR + LM 77.6 84.2 arxiv-17
MneReaderV2 79.5 86.6 IJCAI18

None original Implementations (may without offical code)

Repository RNET MneReader QANet Document Reader FusionNet
ML Results in paper 71.1/79.5 71.8/81.2 73.6/82.7 69.5/78.8 76.0/83.9
Pytorch X X -3.6/-3.3 X X
Pytorch -0.9/-0.3 +0.5/+0.2 X -0.1/-0.2 X
TensorFlow -/- X X X X

Refs

Dataset

Leadboards

Reference

E2E Models for SQuAD and summrized contributions

Non-E2E Models

  • Globally Normalized Reader / code
    1.Three stage model include sentence selection, start prediction, end prediction
    2.Data augmentation (as the model runs faster, the authors replace the NEs to generate more data)

Models for others dataset

Tricks

Generation

Slot-filling

Adversarial