-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN_new.py
203 lines (134 loc) · 5.78 KB
/
ANN_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
######CSV Style: 0:ID 1-88:feature 89:weight 90:label
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pandas as pd
import tensorflow as tf
import numpy as np
import math
from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib
from tensorflow.contrib import learn
tf.logging.set_verbosity(tf.logging.INFO)
#Generate Training Set
DIR = "../data/stock_train_data_20170901.csv"
COLUMNS = list(range(1,91)) #Read Feature,weight,label
all_set = pd.read_csv(DIR, skipinitialspace=True,
skiprows=0, usecols=COLUMNS).as_matrix()
SORT = list(range(0,89))
SORT.insert(0,89) #89,0-87,88
all_set = all_set[:,np.array(SORT)] #Change into 0Label,Feature,88Weight
np.random.shuffle(all_set)
#training_set=all_set
training_set=all_set[0:math.floor(all_set.shape[0]*0.7)]
validation_set=all_set[math.floor(all_set.shape[0]*0.7):]
#Generate Testing numbers and training weight
TESTDIR="../data/stock_test_data_20170901.csv"
pred_col=list(range(1,89)) #1-88,Features
prediction_set=pd.read_csv(TESTDIR, skipinitialspace=True,
skiprows=0, usecols=pred_col).as_matrix()
#Training Parameters
MODEL_DIR = "../data/model1"
TRAINING_STEPS = 5
LEARNING_RATE = 0.002
BATCH_SIZE = 800
OPTIMIZER = "Adam"
#predicted_result = None
exp = None
predicted_prob = None
prediction_set = None
predicted_class = None
#Model Parameters
n1= 80
n2=40
n3= 20
def model_fn(features, targets, mode, params):
"""Model function for Estimator."""
# Comy_estimatorect the first hidden layer to input layer
first_hidden_layer = tf.layers.dense(tf.layers.batch_normalization(tf.to_double(features)), n1, activation=tf.nn.relu)
first_processed = tf.contrib.layers.dropout(first_hidden_layer, keep_prob=0.7)
# Connect the second hidden layer to first hidden layer with relu
second_hidden_layer = tf.layers.dense(first_processed, n2, activation=tf.nn.relu)
second_processed = tf.contrib.layers.dropout(second_hidden_layer,0.7)
third_hidden_layer = tf.layers.dense(second_processed, n3, activation=tf.nn.relu)
third_processed = tf.contrib.layers.dropout(third_hidden_layer,0.7)
# Comy_estimatorect the output layer to second hidden layer (no activation fn)
logits = tf.layers.dense(third_processed, 2, activation=None)
weights = tf.constant(params["weights"])
#logits = tf.contrib.layers.layer_norm(pre_logits,activation_fn=None)
# Generate Predictions
predictions = {
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
# Calculate loss
onehot_labels = tf.reshape(tf.contrib.layers.one_hot_encoding(targets, 2),[-1, 2])
'''
loss = tf.losses.softmax_cross_entropy(onehot_labels, logits, weights=weights)
loss = tf.losses.softmax_cross_entropy(onehot_labels, logits)
'''
#loss = tf.losses.softmax_cross_entropy(onehot_labels, logits, weights=weights)
loss = None
train_op = None
# Calculate Loss (for both TRAIN and EVAL modes)
if mode != learn.ModeKeys.TRAIN:
#onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == learn.ModeKeys.TRAIN:
loss = tf.losses.softmax_cross_entropy(onehot_labels, logits, weights=weights)
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=params["learning_rate"],
optimizer= OPTIMIZER)
# Return a ModelFnOps object (eval_metrics not included)
return model_fn_lib.ModelFnOps(
mode=mode, predictions=predictions, loss=loss, train_op=train_op)
def input_fn(data_set):
features = tf.constant(np.delete(data_set, 0, 1))
labels = tf.constant(np.int_(np.delete(data_set, np.s_[1:], 1)))
return features, labels
def new_input_fn(data_set):
features = tf.constant(data_set)
labels = tf.constant(np.int_(np.delete(data_set, np.s_[1:], 1)))
return features, labels
def main():
global prediction_set
global training_weight
global training_set
'''
all_set = pd.read_csv(DIR, skipinitialspace=True,
skiprows=0, usecols=COLUMNS).as_matrix()
SORT = list(range(0,89))
SORT.insert(0,89)
all_set = all_set[:,np.array(SORT)]
'''
#np.random.shuffle(all_set)
training_weight=training_set[:,-1]
training_set=training_set[:,:-1]
model_params = {"learning_rate": LEARNING_RATE, "model_dir": MODEL_DIR, "weights": training_weight}
configs = tf.contrib.learn.RunConfig(save_summary_steps=500)
#Build the estimator model
my_estimator = tf.contrib.learn.Estimator(model_fn=model_fn, params=model_params,
config=configs,
model_dir= MODEL_DIR)
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
input_fn=lambda: input_fn(training_set),
early_stopping_metric="loss",
early_stopping_metric_minimize=True,
early_stopping_rounds=200)
#Initialize the training
my_estimator.fit(input_fn=lambda: input_fn(training_set), steps=TRAINING_STEPS)
#SKCompat Version (accepts using batch size)
#Validate
my_estimator.evaluate(input_fn=lambda: input_fn(validation_set))
#Predict
predicted_result = my_estimator.predict(input_fn=lambda: new_input_fn(prediction_set),as_iterable=False)
predicted_prob = predicted_result["probabilities"]
predicted_class = predicted_result["classes"]
#Save
np.save('result.npy',predicted_prob)
np.savetxt('result.csv',predicted_prob,delimiter=',')
if __name__ == "__main__":
main()