-
Notifications
You must be signed in to change notification settings - Fork 92
/
softmax.py
140 lines (105 loc) · 4.89 KB
/
softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow.python.platform
import numpy as np
import tensorflow as tf
import plot_boundary_on_data
# Global variables.
NUM_LABELS = 2 # The number of labels.
BATCH_SIZE = 100 # The number of training examples to use per training step.
# Define the flags useable from the command line.
tf.app.flags.DEFINE_string('train', None,
'File containing the training data (labels & features).')
tf.app.flags.DEFINE_string('test', None,
'File containing the test data (labels & features).')
tf.app.flags.DEFINE_integer('num_epochs', 1,
'Number of examples to separate from the training '
'data for the validation set.')
tf.app.flags.DEFINE_boolean('verbose', False, 'Produce verbose output.')
tf.app.flags.DEFINE_boolean('plot', True, 'Plot the final decision boundary on the data.')
FLAGS = tf.app.flags.FLAGS
# Extract numpy representations of the labels and features given rows consisting of:
# label, feat_0, feat_1, ..., feat_n
def extract_data(filename):
# Arrays to hold the labels and feature vectors.
labels = []
fvecs = []
# Iterate over the rows, splitting the label from the features. Convert labels
# to integers and features to floats.
for line in file(filename):
row = line.split(",")
labels.append(int(row[0]))
fvecs.append([float(x) for x in row[1:]])
# Convert the array of float arrays into a numpy float matrix.
fvecs_np = np.matrix(fvecs).astype(np.float32)
# Convert the array of int labels into a numpy array.
labels_np = np.array(labels).astype(dtype=np.uint8)
# Convert the int numpy array into a one-hot matrix.
labels_onehot = (np.arange(NUM_LABELS) == labels_np[:, None]).astype(np.float32)
# Return a pair of the feature matrix and the one-hot label matrix.
return fvecs_np,labels_onehot
def main(argv=None):
# Be verbose?
verbose = FLAGS.verbose
# Plot?
plot = FLAGS.plot
# Get the data.
train_data_filename = FLAGS.train
test_data_filename = FLAGS.test
# Extract it into numpy matrices.
train_data,train_labels = extract_data(train_data_filename)
test_data, test_labels = extract_data(test_data_filename)
# Get the shape of the training data.
train_size,num_features = train_data.shape
# Get the number of epochs for training.
num_epochs = FLAGS.num_epochs
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
x = tf.placeholder("float", shape=[None, num_features])
y_ = tf.placeholder("float", shape=[None, NUM_LABELS])
# These are the weights that inform how much each feature contributes to
# the classification.
W = tf.Variable(tf.zeros([num_features,NUM_LABELS]))
b = tf.Variable(tf.zeros([NUM_LABELS]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
# Optimization.
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# For the test data, hold the entire dataset in one constant node.
test_data_node = tf.constant(test_data)
# Evaluation.
predicted_class = tf.argmax(y,1);
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# Create a local session to run this computation.
with tf.Session() as s:
# Run all the initializers to prepare the trainable parameters.
tf.initialize_all_variables().run()
# Iterate and train.
for step in xrange(num_epochs * train_size // BATCH_SIZE)
offset = (step * BATCH_SIZE) % train_size
# get a batch of data
batch_data = train_data[offset:(offset + BATCH_SIZE), :]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# feed data into the model
train_step.run(feed_dict={x: batch_data, y_: batch_labels})
# Give very detailed output.
if verbose:
print
print 'Weight matrix.'
print s.run(W)
print
print 'Bias vector.'
print s.run(b)
print
print "Applying model to first test instance."
first = test_data[:1]
print "Point =", first
print "Wx+b = ", s.run(tf.matmul(first,W)+b)
print "softmax(Wx+b) = ", s.run(tf.nn.softmax(tf.matmul(first,W)+b))
print
print "Accuracy:", accuracy.eval(feed_dict={x: test_data, y_: test_labels})
if plot:
eval_fun = lambda X: predicted_class.eval(feed_dict={x:X});
plot_boundary_on_data.plot(test_data, test_labels, eval_fun)
if __name__ == '__main__':
tf.app.run()