forked from scottransom/pyslalib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fitxy.f
328 lines (291 loc) · 8.87 KB
/
fitxy.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
SUBROUTINE sla_FITXY (ITYPE,NP,XYE,XYM,COEFFS,J)
*+
* - - - - - -
* F I T X Y
* - - - - - -
*
* Fit a linear model to relate two sets of [X,Y] coordinates.
*
* Given:
* ITYPE i type of model: 4 or 6 (note 1)
* NP i number of samples (note 2)
* XYE d(2,np) expected [X,Y] for each sample
* XYM d(2,np) measured [X,Y] for each sample
*
* Returned:
* COEFFS d(6) coefficients of model (note 3)
* J i status: 0 = OK
* -1 = illegal ITYPE
* -2 = insufficient data
* -3 = no solution
*
* Notes:
*
* 1) ITYPE, which must be either 4 or 6, selects the type of model
* fitted. Both allowed ITYPE values produce a model COEFFS which
* consists of six coefficients, namely the zero points and, for
* each of XE and YE, the coefficient of XM and YM. For ITYPE=6,
* all six coefficients are independent, modelling squash and shear
* as well as origin, scale, and orientation. However, ITYPE=4
* selects the "solid body rotation" option; the model COEFFS
* still consists of the same six coefficients, but now two of
* them are used twice (appropriately signed). Origin, scale
* and orientation are still modelled, but not squash or shear -
* the units of X and Y have to be the same.
*
* 2) For NC=4, NP must be at least 2. For NC=6, NP must be at
* least 3.
*
* 3) The model is returned in the array COEFFS. Naming the
* elements of COEFFS as follows:
*
* COEFFS(1) = A
* COEFFS(2) = B
* COEFFS(3) = C
* COEFFS(4) = D
* COEFFS(5) = E
* COEFFS(6) = F
*
* the model is:
*
* XE = A + B*XM + C*YM
* YE = D + E*XM + F*YM
*
* For the "solid body rotation" option (ITYPE=4), the
* magnitudes of B and F, and of C and E, are equal. The
* signs of these coefficients depend on whether there is a
* sign reversal between XE,YE and XM,YM; fits are performed
* with and without a sign reversal and the best one chosen.
*
* 4) Error status values J=-1 and -2 leave COEFFS unchanged;
* if J=-3 COEFFS may have been changed.
*
* See also sla_PXY, sla_INVF, sla_XY2XY, sla_DCMPF
*
* Called: sla_DMAT, sla_DMXV
*
* Last revision: 8 September 2005
*
* Copyright P.T.Wallace. All rights reserved.
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
*-
IMPLICIT NONE
INTEGER ITYPE,NP
DOUBLE PRECISION XYE(2,NP),XYM(2,NP),COEFFS(6)
INTEGER J
INTEGER I,JSTAT,IW(4),NSOL
DOUBLE PRECISION A,B,C,D,AOLD,BOLD,COLD,DOLD,SOLD,
: P,SXE,SXEXM,SXEYM,SYE,SYEYM,SYEXM,SXM,
: SYM,SXMXM,SXMYM,SYMYM,XE,YE,
: XM,YM,V(4),DM3(3,3),DM4(4,4),DET,
: SGN,SXXYY,SXYYX,SX2Y2,SDR2,XR,YR
* Preset the status
J=0
* Variable initializations to avoid compiler warnings
A = 0D0
B = 0D0
C = 0D0
D = 0D0
AOLD = 0D0
BOLD = 0D0
COLD = 0D0
DOLD = 0D0
SOLD = 0D0
* Float the number of samples
P=DBLE(NP)
* Check ITYPE
IF (ITYPE.EQ.6) THEN
*
* Six-coefficient linear model
* ----------------------------
* Check enough samples
IF (NP.GE.3) THEN
* Form summations
SXE=0D0
SXEXM=0D0
SXEYM=0D0
SYE=0D0
SYEYM=0D0
SYEXM=0D0
SXM=0D0
SYM=0D0
SXMXM=0D0
SXMYM=0D0
SYMYM=0D0
DO I=1,NP
XE=XYE(1,I)
YE=XYE(2,I)
XM=XYM(1,I)
YM=XYM(2,I)
SXE=SXE+XE
SXEXM=SXEXM+XE*XM
SXEYM=SXEYM+XE*YM
SYE=SYE+YE
SYEYM=SYEYM+YE*YM
SYEXM=SYEXM+YE*XM
SXM=SXM+XM
SYM=SYM+YM
SXMXM=SXMXM+XM*XM
SXMYM=SXMYM+XM*YM
SYMYM=SYMYM+YM*YM
END DO
* Solve for A,B,C in XE = A + B*XM + C*YM
V(1)=SXE
V(2)=SXEXM
V(3)=SXEYM
DM3(1,1)=P
DM3(1,2)=SXM
DM3(1,3)=SYM
DM3(2,1)=SXM
DM3(2,2)=SXMXM
DM3(2,3)=SXMYM
DM3(3,1)=SYM
DM3(3,2)=SXMYM
DM3(3,3)=SYMYM
CALL sla_DMAT(3,DM3,V,DET,JSTAT,IW)
IF (JSTAT.EQ.0) THEN
DO I=1,3
COEFFS(I)=V(I)
END DO
* Solve for D,E,F in YE = D + E*XM + F*YM
V(1)=SYE
V(2)=SYEXM
V(3)=SYEYM
CALL sla_DMXV(DM3,V,COEFFS(4))
ELSE
* No 6-coefficient solution possible
J=-3
END IF
ELSE
* Insufficient data for 6-coefficient fit
J=-2
END IF
ELSE IF (ITYPE.EQ.4) THEN
*
* Four-coefficient solid body rotation model
* ------------------------------------------
* Check enough samples
IF (NP.GE.2) THEN
* Try two solutions, first without then with flip in X
DO NSOL=1,2
IF (NSOL.EQ.1) THEN
SGN=1D0
ELSE
SGN=-1D0
END IF
* Form summations
SXE=0D0
SXXYY=0D0
SXYYX=0D0
SYE=0D0
SXM=0D0
SYM=0D0
SX2Y2=0D0
DO I=1,NP
XE=XYE(1,I)*SGN
YE=XYE(2,I)
XM=XYM(1,I)
YM=XYM(2,I)
SXE=SXE+XE
SXXYY=SXXYY+XE*XM+YE*YM
SXYYX=SXYYX+XE*YM-YE*XM
SYE=SYE+YE
SXM=SXM+XM
SYM=SYM+YM
SX2Y2=SX2Y2+XM*XM+YM*YM
END DO
*
* Solve for A,B,C,D in: +/- XE = A + B*XM - C*YM
* + YE = D + C*XM + B*YM
V(1)=SXE
V(2)=SXXYY
V(3)=SXYYX
V(4)=SYE
DM4(1,1)=P
DM4(1,2)=SXM
DM4(1,3)=-SYM
DM4(1,4)=0D0
DM4(2,1)=SXM
DM4(2,2)=SX2Y2
DM4(2,3)=0D0
DM4(2,4)=SYM
DM4(3,1)=SYM
DM4(3,2)=0D0
DM4(3,3)=-SX2Y2
DM4(3,4)=-SXM
DM4(4,1)=0D0
DM4(4,2)=SYM
DM4(4,3)=SXM
DM4(4,4)=P
CALL sla_DMAT(4,DM4,V,DET,JSTAT,IW)
IF (JSTAT.EQ.0) THEN
A=V(1)
B=V(2)
C=V(3)
D=V(4)
* Determine sum of radial errors squared
SDR2=0D0
DO I=1,NP
XM=XYM(1,I)
YM=XYM(2,I)
XR=A+B*XM-C*YM-XYE(1,I)*SGN
YR=D+C*XM+B*YM-XYE(2,I)
SDR2=SDR2+XR*XR+YR*YR
END DO
ELSE
* Singular: set flag
SDR2=-1D0
END IF
* If first pass and non-singular, save variables
IF (NSOL.EQ.1.AND.JSTAT.EQ.0) THEN
AOLD=A
BOLD=B
COLD=C
DOLD=D
SOLD=SDR2
END IF
END DO
* Pick the best of the two solutions
IF (SOLD.GE.0D0.AND.(SOLD.LE.SDR2.OR.NP.EQ.2)) THEN
COEFFS(1)=AOLD
COEFFS(2)=BOLD
COEFFS(3)=-COLD
COEFFS(4)=DOLD
COEFFS(5)=COLD
COEFFS(6)=BOLD
ELSE IF (JSTAT.EQ.0) THEN
COEFFS(1)=-A
COEFFS(2)=-B
COEFFS(3)=C
COEFFS(4)=D
COEFFS(5)=C
COEFFS(6)=B
ELSE
* No 4-coefficient fit possible
J=-3
END IF
ELSE
* Insufficient data for 4-coefficient fit
J=-2
END IF
ELSE
* Illegal ITYPE - not 4 or 6
J=-1
END IF
END