forked from scottransom/pyslalib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evp.f
456 lines (411 loc) · 15.7 KB
/
evp.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
SUBROUTINE sla_EVP (DATE, DEQX, DVB, DPB, DVH, DPH)
*+
* - - - -
* E V P
* - - - -
*
* Barycentric and heliocentric velocity and position of the Earth
*
* All arguments are double precision
*
* Given:
*
* DATE TDB (loosely ET) as a Modified Julian Date
* (JD-2400000.5)
*
* DEQX Julian Epoch (e.g. 2000.0D0) of mean equator and
* equinox of the vectors returned. If DEQX .LE. 0D0,
* all vectors are referred to the mean equator and
* equinox (FK5) of epoch DATE.
*
* Returned (all 3D Cartesian vectors):
*
* DVB,DPB barycentric velocity, position (AU/s, AU)
* DVH,DPH heliocentric velocity, position (AU/s, AU)
*
* Called: sla_EPJ, sla_PREC
*
* Notes:
*
* 1 This routine is accurate enough for many purposes but faster and
* more compact than the sla_EPV routine. The maximum deviations
* from the JPL DE96 ephemeris are as follows:
*
* barycentric velocity 0.42 m/s
* barycentric position 6900 km
*
* heliocentric velocity 0.42 m/s
* heliocentric position 1600 km
*
* 2 The routine is adapted from the BARVEL and BARCOR subroutines of
* Stumpff (1980). Most of the changes are merely cosmetic and do
* not affect the results at all. However, some adjustments have
* been made so as to give results that refer to the IAU 1976 'FK5'
* equinox and precession, although the differences these changes
* make relative to the results from Stumpff's original 'FK4' version
* are smaller than the inherent accuracy of the algorithm. One
* minor shortcoming in the original routines that has NOT been
* corrected is that better numerical accuracy could be achieved if
* the various polynomial evaluations were nested.
*
* Reference:
*
* Stumpff, P., Astron.Astrophys.Suppl.Ser. 41, 1-8 (1980).
*
* Last revision: 7 April 2005
*
* Copyright P.T.Wallace. All rights reserved.
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
*-
IMPLICIT NONE
DOUBLE PRECISION DATE,DEQX,DVB(3),DPB(3),DVH(3),DPH(3)
INTEGER IDEQ,I,J,K
REAL CC2PI,CCSEC3,CCSGD,CCKM,CCMLD,CCFDI,CCIM,T,TSQ,A,PERTL,
: PERTLD,PERTR,PERTRD,COSA,SINA,ESQ,E,PARAM,TWOE,TWOG,G,
: PHI,F,SINF,COSF,PHID,PSID,PERTP,PERTPD,TL,SINLM,COSLM,
: SIGMA,B,PLON,POMG,PECC,FLATM,FLAT
DOUBLE PRECISION DC2PI,DS2R,DCSLD,DC1MME,DT,DTSQ,DLOCAL,DML,
: DEPS,DPARAM,DPSI,D1PDRO,DRD,DRLD,DTL,DSINLS,
: DCOSLS,DXHD,DYHD,DZHD,DXBD,DYBD,DZBD,DCOSEP,
: DSINEP,DYAHD,DZAHD,DYABD,DZABD,DR,
: DXH,DYH,DZH,DXB,DYB,DZB,DYAH,DZAH,DYAB,
: DZAB,DEPJ,DEQCOR,B1950
REAL SN(4),CCSEL(3,17),CCAMPS(5,15),CCSEC(3,4),CCAMPM(4,3),
: CCPAMV(4),CCPAM(4),FORBEL(7),SORBEL(17),SINLP(4),COSLP(4)
EQUIVALENCE (SORBEL(1),E),(FORBEL(1),G)
DOUBLE PRECISION DCFEL(3,8),DCEPS(3),DCARGS(2,15),DCARGM(2,3),
: DPREMA(3,3),W,VW(3)
DOUBLE PRECISION sla_EPJ
PARAMETER (DC2PI=6.2831853071796D0,CC2PI=6.283185)
PARAMETER (DS2R=0.7272205216643D-4)
PARAMETER (B1950=1949.9997904423D0)
*
* Constants DCFEL(I,K) of fast changing elements
* I=1 I=2 I=3
DATA DCFEL/ 1.7400353D+00, 6.2833195099091D+02, 5.2796D-06,
: 6.2565836D+00, 6.2830194572674D+02,-2.6180D-06,
: 4.7199666D+00, 8.3997091449254D+03,-1.9780D-05,
: 1.9636505D-01, 8.4334662911720D+03,-5.6044D-05,
: 4.1547339D+00, 5.2993466764997D+01, 5.8845D-06,
: 4.6524223D+00, 2.1354275911213D+01, 5.6797D-06,
: 4.2620486D+00, 7.5025342197656D+00, 5.5317D-06,
: 1.4740694D+00, 3.8377331909193D+00, 5.6093D-06/
*
* Constants DCEPS and CCSEL(I,K) of slowly changing elements
* I=1 I=2 I=3
DATA DCEPS/ 4.093198D-01,-2.271110D-04,-2.860401D-08 /
DATA CCSEL/ 1.675104E-02,-4.179579E-05,-1.260516E-07,
: 2.220221E-01, 2.809917E-02, 1.852532E-05,
: 1.589963E+00, 3.418075E-02, 1.430200E-05,
: 2.994089E+00, 2.590824E-02, 4.155840E-06,
: 8.155457E-01, 2.486352E-02, 6.836840E-06,
: 1.735614E+00, 1.763719E-02, 6.370440E-06,
: 1.968564E+00, 1.524020E-02,-2.517152E-06,
: 1.282417E+00, 8.703393E-03, 2.289292E-05,
: 2.280820E+00, 1.918010E-02, 4.484520E-06,
: 4.833473E-02, 1.641773E-04,-4.654200E-07,
: 5.589232E-02,-3.455092E-04,-7.388560E-07,
: 4.634443E-02,-2.658234E-05, 7.757000E-08,
: 8.997041E-03, 6.329728E-06,-1.939256E-09,
: 2.284178E-02,-9.941590E-05, 6.787400E-08,
: 4.350267E-02,-6.839749E-05,-2.714956E-07,
: 1.348204E-02, 1.091504E-05, 6.903760E-07,
: 3.106570E-02,-1.665665E-04,-1.590188E-07/
*
* Constants of the arguments of the short-period perturbations
* by the planets: DCARGS(I,K)
* I=1 I=2
DATA DCARGS/ 5.0974222D+00,-7.8604195454652D+02,
: 3.9584962D+00,-5.7533848094674D+02,
: 1.6338070D+00,-1.1506769618935D+03,
: 2.5487111D+00,-3.9302097727326D+02,
: 4.9255514D+00,-5.8849265665348D+02,
: 1.3363463D+00,-5.5076098609303D+02,
: 1.6072053D+00,-5.2237501616674D+02,
: 1.3629480D+00,-1.1790629318198D+03,
: 5.5657014D+00,-1.0977134971135D+03,
: 5.0708205D+00,-1.5774000881978D+02,
: 3.9318944D+00, 5.2963464780000D+01,
: 4.8989497D+00, 3.9809289073258D+01,
: 1.3097446D+00, 7.7540959633708D+01,
: 3.5147141D+00, 7.9618578146517D+01,
: 3.5413158D+00,-5.4868336758022D+02/
*
* Amplitudes CCAMPS(N,K) of the short-period perturbations
* N=1 N=2 N=3 N=4 N=5
DATA CCAMPS/
: -2.279594E-5, 1.407414E-5, 8.273188E-6, 1.340565E-5,-2.490817E-7,
: -3.494537E-5, 2.860401E-7, 1.289448E-7, 1.627237E-5,-1.823138E-7,
: 6.593466E-7, 1.322572E-5, 9.258695E-6,-4.674248E-7,-3.646275E-7,
: 1.140767E-5,-2.049792E-5,-4.747930E-6,-2.638763E-6,-1.245408E-7,
: 9.516893E-6,-2.748894E-6,-1.319381E-6,-4.549908E-6,-1.864821E-7,
: 7.310990E-6,-1.924710E-6,-8.772849E-7,-3.334143E-6,-1.745256E-7,
: -2.603449E-6, 7.359472E-6, 3.168357E-6, 1.119056E-6,-1.655307E-7,
: -3.228859E-6, 1.308997E-7, 1.013137E-7, 2.403899E-6,-3.736225E-7,
: 3.442177E-7, 2.671323E-6, 1.832858E-6,-2.394688E-7,-3.478444E-7,
: 8.702406E-6,-8.421214E-6,-1.372341E-6,-1.455234E-6,-4.998479E-8,
: -1.488378E-6,-1.251789E-5, 5.226868E-7,-2.049301E-7, 0.0E0,
: -8.043059E-6,-2.991300E-6, 1.473654E-7,-3.154542E-7, 0.0E0,
: 3.699128E-6,-3.316126E-6, 2.901257E-7, 3.407826E-7, 0.0E0,
: 2.550120E-6,-1.241123E-6, 9.901116E-8, 2.210482E-7, 0.0E0,
: -6.351059E-7, 2.341650E-6, 1.061492E-6, 2.878231E-7, 0.0E0/
*
* Constants of the secular perturbations in longitude
* CCSEC3 and CCSEC(N,K)
* N=1 N=2 N=3
DATA CCSEC3/-7.757020E-08/,
: CCSEC/ 1.289600E-06, 5.550147E-01, 2.076942E+00,
: 3.102810E-05, 4.035027E+00, 3.525565E-01,
: 9.124190E-06, 9.990265E-01, 2.622706E+00,
: 9.793240E-07, 5.508259E+00, 1.559103E+01/
* Sidereal rate DCSLD in longitude, rate CCSGD in mean anomaly
DATA DCSLD/1.990987D-07/,
: CCSGD/1.990969E-07/
* Some constants used in the calculation of the lunar contribution
DATA CCKM/3.122140E-05/,
: CCMLD/2.661699E-06/,
: CCFDI/2.399485E-07/
*
* Constants DCARGM(I,K) of the arguments of the perturbations
* of the motion of the Moon
* I=1 I=2
DATA DCARGM/ 5.1679830D+00, 8.3286911095275D+03,
: 5.4913150D+00,-7.2140632838100D+03,
: 5.9598530D+00, 1.5542754389685D+04/
*
* Amplitudes CCAMPM(N,K) of the perturbations of the Moon
* N=1 N=2 N=3 N=4
DATA CCAMPM/
: 1.097594E-01, 2.896773E-07, 5.450474E-02, 1.438491E-07,
: -2.223581E-02, 5.083103E-08, 1.002548E-02,-2.291823E-08,
: 1.148966E-02, 5.658888E-08, 8.249439E-03, 4.063015E-08/
*
* CCPAMV(K)=A*M*DL/DT (planets), DC1MME=1-MASS(Earth+Moon)
DATA CCPAMV/8.326827E-11,1.843484E-11,1.988712E-12,1.881276E-12/
DATA DC1MME/0.99999696D0/
* CCPAM(K)=A*M(planets), CCIM=INCLINATION(Moon)
DATA CCPAM/4.960906E-3,2.727436E-3,8.392311E-4,1.556861E-3/
DATA CCIM/8.978749E-2/
*
* EXECUTION
* ---------
* Control parameter IDEQ, and time arguments
IDEQ = 0
IF (DEQX.GT.0D0) IDEQ=1
DT = (DATE-15019.5D0)/36525D0
T = REAL(DT)
DTSQ = DT*DT
TSQ = REAL(DTSQ)
* Values of all elements for the instant DATE
DO K=1,8
DLOCAL = MOD(DCFEL(1,K)+DT*DCFEL(2,K)+DTSQ*DCFEL(3,K), DC2PI)
IF (K.EQ.1) THEN
DML = DLOCAL
ELSE
FORBEL(K-1) = REAL(DLOCAL)
END IF
END DO
DEPS = MOD(DCEPS(1)+DT*DCEPS(2)+DTSQ*DCEPS(3), DC2PI)
DO K=1,17
SORBEL(K) = MOD(CCSEL(1,K)+T*CCSEL(2,K)+TSQ*CCSEL(3,K),
: CC2PI)
END DO
* Secular perturbations in longitude
DO K=1,4
A = MOD(CCSEC(2,K)+T*CCSEC(3,K), CC2PI)
SN(K) = SIN(A)
END DO
* Periodic perturbations of the EMB (Earth-Moon barycentre)
PERTL = CCSEC(1,1) *SN(1) +CCSEC(1,2)*SN(2)+
: (CCSEC(1,3)+T*CCSEC3)*SN(3) +CCSEC(1,4)*SN(4)
PERTLD = 0.0
PERTR = 0.0
PERTRD = 0.0
DO K=1,15
A = SNGL(MOD(DCARGS(1,K)+DT*DCARGS(2,K), DC2PI))
COSA = COS(A)
SINA = SIN(A)
PERTL = PERTL + CCAMPS(1,K)*COSA+CCAMPS(2,K)*SINA
PERTR = PERTR + CCAMPS(3,K)*COSA+CCAMPS(4,K)*SINA
IF (K.LT.11) THEN
PERTLD = PERTLD+
: (CCAMPS(2,K)*COSA-CCAMPS(1,K)*SINA)*CCAMPS(5,K)
PERTRD = PERTRD+
: (CCAMPS(4,K)*COSA-CCAMPS(3,K)*SINA)*CCAMPS(5,K)
END IF
END DO
* Elliptic part of the motion of the EMB
ESQ = E*E
DPARAM = 1D0-DBLE(ESQ)
PARAM = REAL(DPARAM)
TWOE = E+E
TWOG = G+G
PHI = TWOE*((1.0-ESQ*0.125)*SIN(G)+E*0.625*SIN(TWOG)
: +ESQ*0.54166667*SIN(G+TWOG) )
F = G+PHI
SINF = SIN(F)
COSF = COS(F)
DPSI = DPARAM/(1D0+DBLE(E*COSF))
PHID = TWOE*CCSGD*((1.0+ESQ*1.5)*COSF+E*(1.25-SINF*SINF*0.5))
PSID = CCSGD*E*SINF/SQRT(PARAM)
* Perturbed heliocentric motion of the EMB
D1PDRO = 1D0+DBLE(PERTR)
DRD = D1PDRO*(DBLE(PSID)+DPSI*DBLE(PERTRD))
DRLD = D1PDRO*DPSI*(DCSLD+DBLE(PHID)+DBLE(PERTLD))
DTL = MOD(DML+DBLE(PHI)+DBLE(PERTL), DC2PI)
DSINLS = SIN(DTL)
DCOSLS = COS(DTL)
DXHD = DRD*DCOSLS-DRLD*DSINLS
DYHD = DRD*DSINLS+DRLD*DCOSLS
* Influence of eccentricity, evection and variation on the
* geocentric motion of the Moon
PERTL = 0.0
PERTLD = 0.0
PERTP = 0.0
PERTPD = 0.0
DO K=1,3
A = SNGL(MOD(DCARGM(1,K)+DT*DCARGM(2,K), DC2PI))
SINA = SIN(A)
COSA = COS(A)
PERTL = PERTL +CCAMPM(1,K)*SINA
PERTLD = PERTLD+CCAMPM(2,K)*COSA
PERTP = PERTP +CCAMPM(3,K)*COSA
PERTPD = PERTPD-CCAMPM(4,K)*SINA
END DO
* Heliocentric motion of the Earth
TL = FORBEL(2)+PERTL
SINLM = SIN(TL)
COSLM = COS(TL)
SIGMA = CCKM/(1.0+PERTP)
A = SIGMA*(CCMLD+PERTLD)
B = SIGMA*PERTPD
DXHD = DXHD+DBLE(A*SINLM)+DBLE(B*COSLM)
DYHD = DYHD-DBLE(A*COSLM)+DBLE(B*SINLM)
DZHD = -DBLE(SIGMA*CCFDI*COS(FORBEL(3)))
* Barycentric motion of the Earth
DXBD = DXHD*DC1MME
DYBD = DYHD*DC1MME
DZBD = DZHD*DC1MME
DO K=1,4
PLON = FORBEL(K+3)
POMG = SORBEL(K+1)
PECC = SORBEL(K+9)
TL = MOD(PLON+2.0*PECC*SIN(PLON-POMG), CC2PI)
SINLP(K) = SIN(TL)
COSLP(K) = COS(TL)
DXBD = DXBD+DBLE(CCPAMV(K)*(SINLP(K)+PECC*SIN(POMG)))
DYBD = DYBD-DBLE(CCPAMV(K)*(COSLP(K)+PECC*COS(POMG)))
DZBD = DZBD-DBLE(CCPAMV(K)*SORBEL(K+13)*COS(PLON-SORBEL(K+5)))
END DO
* Transition to mean equator of date
DCOSEP = COS(DEPS)
DSINEP = SIN(DEPS)
DYAHD = DCOSEP*DYHD-DSINEP*DZHD
DZAHD = DSINEP*DYHD+DCOSEP*DZHD
DYABD = DCOSEP*DYBD-DSINEP*DZBD
DZABD = DSINEP*DYBD+DCOSEP*DZBD
* Heliocentric coordinates of the Earth
DR = DPSI*D1PDRO
FLATM = CCIM*SIN(FORBEL(3))
A = SIGMA*COS(FLATM)
DXH = DR*DCOSLS-DBLE(A*COSLM)
DYH = DR*DSINLS-DBLE(A*SINLM)
DZH = -DBLE(SIGMA*SIN(FLATM))
* Barycentric coordinates of the Earth
DXB = DXH*DC1MME
DYB = DYH*DC1MME
DZB = DZH*DC1MME
DO K=1,4
FLAT = SORBEL(K+13)*SIN(FORBEL(K+3)-SORBEL(K+5))
A = CCPAM(K)*(1.0-SORBEL(K+9)*COS(FORBEL(K+3)-SORBEL(K+1)))
B = A*COS(FLAT)
DXB = DXB-DBLE(B*COSLP(K))
DYB = DYB-DBLE(B*SINLP(K))
DZB = DZB-DBLE(A*SIN(FLAT))
END DO
* Transition to mean equator of date
DYAH = DCOSEP*DYH-DSINEP*DZH
DZAH = DSINEP*DYH+DCOSEP*DZH
DYAB = DCOSEP*DYB-DSINEP*DZB
DZAB = DSINEP*DYB+DCOSEP*DZB
* Copy result components into vectors, correcting for FK4 equinox
DEPJ=sla_EPJ(DATE)
DEQCOR = DS2R*(0.035D0+0.00085D0*(DEPJ-B1950))
DVH(1) = DXHD-DEQCOR*DYAHD
DVH(2) = DYAHD+DEQCOR*DXHD
DVH(3) = DZAHD
DVB(1) = DXBD-DEQCOR*DYABD
DVB(2) = DYABD+DEQCOR*DXBD
DVB(3) = DZABD
DPH(1) = DXH-DEQCOR*DYAH
DPH(2) = DYAH+DEQCOR*DXH
DPH(3) = DZAH
DPB(1) = DXB-DEQCOR*DYAB
DPB(2) = DYAB+DEQCOR*DXB
DPB(3) = DZAB
* Was precession to another equinox requested?
IF (IDEQ.NE.0) THEN
* Yes: compute precession matrix from MJD DATE to Julian epoch DEQX
CALL sla_PREC(DEPJ,DEQX,DPREMA)
* Rotate DVH
DO J=1,3
W=0D0
DO I=1,3
W=W+DPREMA(J,I)*DVH(I)
END DO
VW(J)=W
END DO
DO J=1,3
DVH(J)=VW(J)
END DO
* Rotate DVB
DO J=1,3
W=0D0
DO I=1,3
W=W+DPREMA(J,I)*DVB(I)
END DO
VW(J)=W
END DO
DO J=1,3
DVB(J)=VW(J)
END DO
* Rotate DPH
DO J=1,3
W=0D0
DO I=1,3
W=W+DPREMA(J,I)*DPH(I)
END DO
VW(J)=W
END DO
DO J=1,3
DPH(J)=VW(J)
END DO
* Rotate DPB
DO J=1,3
W=0D0
DO I=1,3
W=W+DPREMA(J,I)*DPB(I)
END DO
VW(J)=W
END DO
DO J=1,3
DPB(J)=VW(J)
END DO
END IF
END