Skip to content

Latest commit

 

History

History
649 lines (418 loc) · 23.1 KB

README.md

File metadata and controls

649 lines (418 loc) · 23.1 KB

Worm-nomics

Workflow, scripts and analyses described in Adams et al 2023

PART 1: Wet lab protocols

Assembling a genome sequence starts with the organism. Here, we are targeting nematodes that live in culture in the lab.

1.1 Nematode culture

(from Sutton et al. 2021)

  1. Nematodes grow on two 100mm NGM (nematode growth medium) plates seeded with E. coli OP50.
  2. Worms are harvested by washing plates with M9 minimal media into 15mL conical tubes.
  3. Samples are rocked on a tabletop rocker for 1 hour before being centrifuged to pellet worms.
  4. The supernatant is removed and tubes refilled with sterile M9, mixed and pelleted by centrifugation again.
  5. This process needs to be repeated five times or until the supernatant is clear after centrifugation.
  6. The pellet needs to be moved to 2mL tubes and frozen at –20°C until extraction.

1.2 High Molecular Weight DNA extraction

There are two methods we have used with good success. Phenol chloroform is a standard protocol and the Nanobind kit is available from Circulomics.

1.2.1 Circulomics Nanobind

Follow the kit protocols.

After you have HMW DNA:

  1. Measure DNA concentrations and purity with a Qubit and NanoDrop® 1000 spectrophotometer, respectively. The Qubit does high-accuracy quantification and the NanoDrop tells us about the quality of the DNA extract.
  2. Visualize your DNA on a 0.8% agarose gel to verify high-molecular weight gDNA.

1.3 Short Read Eliminator (SRE)

Short fragments will be preferentially sequenced but do not provide good information for assembly. We use the Short Read Eliminator for DNA size selection according to manufacturer guidelines.

1.4 Library Preparation

  1. Prepare DNA libraries using the SQK-LSK109 ligation sequencing kit and load on to R9.4.1 RevD flow cells.
  2. Modify the recommended protocol from ONT by replacing the first AmpureXP bead clean step with an additional treatment with the Short Read Eliminator Kit.

1.5 ONT Sequencing

  1. Load approximately 700ng of gDNA from each library on to a flow cell and sequenced for 48 hours on a GridION X5 platform.
  2. Basecalling is performed by Guppy v.4.0.11 set to high-accuracy mode.

PART 2: Library Analysis

After sequencing we need to move our data from the gridION to another computing system for assembly and analysis. We will start to use UAHPC, the central computing server. Below is an example job submission script, we will discuss how the system works.

#!/bin/bash

#SBATCH -J #job name

#SBATCH -p #partition (a group of nodes). We will use main, owners, or highmem

#SBATCH --qos #This tells what sort of resource allowances you have for a particular partition. We will use main, or jlfierst

#SBATCH -N #number of nodes (1 node = 1 machine/computer) We typically will only use 1)

#SBATCH -c #cpus per task. A cpu is a processor and most nodes have numerous cpus. We typically won’t need to use this option because most of our programs don’t need a certain number of cpus allocated for specific tasks.

#SBATCH -n #number of cpus/cores/threads/processors (these terms are often used interchangeably) required for the job to run. We often use between 1-16. Note that certain combinations of partition/quos will have a maximum number of cpus allowed for use.

#SBATCH --mem #Amount of memory(RAM) requested per node. You must specify a value and unit (20G(20gigabytes)). Default unit is M(megabyte) We can specifically ask for a certain amount of memory per cpu, but usually don’t need to.

#SBATCH -o %A.%a.out #STDOUT output

#SBATCH -e %A.%a.err #STDERR output

#SBATCH —mail-type #emails your if certain things happen with your job. the type “ALL” is typically used and will inform you when your job begins, ends, fails, has invalid dependencies, times out, or gets requeued for some reason.

#SBATCH —mail-user #the username and/or email address to send notifications to. 

Logging on from your terminal:

$ ssh -l username uahpc.ua.edu

Change to the /jlf drive, make a directory for your data and change into the directory

$ cd /jlf

$ mkdir {your mybama name}

$ cd {your my bama name}

UAHPC is a large system with a single log on point (the head node). You will need to write job submission scripts for longer running jobs. For shorter jobs you can request an interactive node

$ srun --pty -p [partition_name] /bin/bash

This will move you from the head node to a compute node but you will interact at the command prompt. The partition_name tells the system which resources you need.

UNIX refresher here: https://github.com/BamaComputationalBiology/IntroToBioinfo/blob/master/1.LifeInTheShell.md

2.1 [Nanostat]

https://github.com/wdecoster/nanostat

NanoStat measures some statistics about our ONT library. It is fairly quick but we need to get on an interactive node so the head node doesn't get 'bogged down' (way too slow).

Use vi to create your job script

$ vi nanostat.sh

Type 'i' for insertion and enter the following:

#!/bin/bash

#SBATCH -J nanoStat #job name
#SBATCH -p long
#SBATCH --qos long
#SBATCH -n 8
#SBATCH -o %A.%a.out #STDOUT output
#SBATCH -e %A.%a.err #STDERR output
#SBATCH —mail-user {your mybama email} 

/jlf/jdmillwood/anaconda3/bin/NanoStat --fastq [ONT_reads.fastq]  --name [name_for_output] --outdir [Directory_for_output] --readtype 1D --threads 16

Hit the 'esc' key, type ':wq' (no quotation marks) to exit and save. To submit your job type

$ sbatch < nanostat.sh

PART 3: Assembly

ONT libraries have large numbers of incorrectly called nucleotides, insertions and deletions. Our group has found the best protocol is to correct ONT sequence reads, assemble and then polish. If you have high long read coverage (>30x >10kb) you can use NextDenovo/NextPolish; otherwise we use Canu/Flye/Pilon. It's worth experimenting with different protocols too and evaluating your assembled sequence.

You will need drmaa

$ pip install drmaa
$ wget https://github.com/natefoo/slurm-drmaa/releases/download/1.1.0/slurm-drmaa-1.1.0.tar.gz
$ tar -vxzf slurm-drmaa-1.1.0.tar.gz
$ cd slurm-drmaa-1.1.0
$ ./configure && make && make install
$ export DRMAA_LIBRARY_PATH=/home/{mybama name}/slurm-drmaa-1.1.0/slurm_drmaa/.libs/libdrmaa.so.1

Tell NextDenovo where the ONT libraries are

$ ls {ONT-libraries} > input.fofn

The output should be a file with a list of libraries, one per line. To view it:

$ more input.fofn

Create a run.cfg (configuration) file. Use vi to create a new file

$ vi run.cfg

Once you are in the file hit 'i' for insertion mode, copy and paste the configurations below:

[General]
job_type = local # local, slurm, sge, pbs, lsf
job_prefix = nextDenovo
task = all # all, correct, assemble
rewrite = yes # yes/no
deltmp = yes 
parallel_jobs = 8 # number of tasks used to run in parallel
input_type = raw # raw, corrected
read_type = ont # clr, ont, hifi
input_fofn = input.fofn # your file created above
workdir = {species name} # output

[correct_option]
read_cutoff = 1k # Discard anything below 1000bp
genome_size = 80M # estimated genome size, we're not sure for Oscheius but we'll use this as a first estimate
sort_options = -m 20g -t 15
minimap2_options_raw = -t 8
pa_correction = 8 # number of corrected tasks used to run in parallel, each corrected task requires ~TOTAL_INPUT_BASES/4 bytes of memory usage.
correction_options = -p 15

[assemble_option]
minimap2_options_cns = -t 8 
nextgraph_options = -a 1

If you need to edit you can tab around and change your file. To save hit 'esc' (the escape key) for command mode then ':wq' to save and exit.

Create a job submission script to assemble with NextDenovo

$ vi assemble.sh

Remember to hit 'i' for insertion mode and type the following:

#!/bin/bash

#SBATCH -J nextDenovo #job name
#SBATCH -p highmem
#SBATCH --qos jlfierst
#SBATCH -n 8
#SBATCH --mem 150G
#SBATCH -o %A.%a.out #STDOUT output
#SBATCH -e %A.%a.err #STDERR output
#SBATCH —mail-user {your mybama email} 

module load bio/nextdenovo

nextDenovo run.cfg

To exit hit the 'esc' key then type ':wq'. To submit to the UAHPC queue system type

$ sbatch < assemble.sh

To check your job type

$ squeue -u {mybama name}

The output will be in the {species name}/03.ctg_graph directory. There are two files, nd.asm.fasta is the assembled genome sequence and nd.asm.fasta.stat gives you some statistics regarding the contiguity and quality of the assembled sequence.

Polishing with NextPolish follows a similar workflow. First, tell NextPolish where the ONT libraries are

$ ls {ONT libraries} > lgs.fofn

Then tell NextPolish where the Illumina short reads are

$ ls {Illumina libraries} {Illumina libraries} > sgs.fofn

Edit the run.cfg file for your sequence

[General]
job_type = local
job_prefix = nextPolish
task = default
rewrite = yes
rerun = 3
parallel_jobs = 2
multithread_jobs = 3
genome = {species name}/03.ctg_graph/nd.asm.fasta
genome_size = auto
workdir = {species name}
polish_options = -p {multithread_jobs}

[sgs_option]
sgs_fofn = ./sgs.fofn
sgs_options = -max_depth 100

[lgs_option]
lgs_fofn = ./lgs.fofn
lgs_options = -min_read_len 5k -max_depth 100
lgs_minimap2_options = -x map-ont

Your assembled, polished sequence will be at {species name}/genome.nextpolish.fasta

See https://nextdenovo.readthedocs.io/en/latest/OPTION.html for a detailed introduction about all the parameters

If you have completed this portion with NextDenovo/NextPolish you can skip down to (4) and begin your evaluations.

3.2 Read correction with Canu, Assemble with Flye

Read correction with Canu using the canu-correct module. Canu assembly can be very slow and our group has found Flye to be much faster with similar or improved accuracy

$ vi canu_assemble.sh

Hit 'i' for insertion and type the following:

#!/bin/bash

#SBATCH -J canu_flye #job name
#SBATCH -p highmem
#SBATCH --qos jlfierst
#SBATCH -n 8
#SBATCH --mem=128G
#SBATCH -o %A.%a.out #STDOUT output
#SBATCH -e %A.%a.err #STDERR output
#SBATCH —mail-user {your mybama email}

module load bio/canu/2.1
module load java/1.8.0

canu -correct -p [outfile_name_prefix] -d [out_directory] genomeSize=80M useGrid=false -nanopore [reads].fastq
    
module load bio/bioinfo-gcc
module load python/python3/3.6.5
/jlf/jdmillwood/Flye/bin/flye --nano-corr /jlf/[mybamausername]/[out_directory]/[prefix].correctedReads.fasta.gz -o flye_try -t 8 --genome-size 80M

Exit by hitting the 'esc' button, typing ':wq'.

Submit your job

$ sbatch < canu_assemble.sh

3.4 Assembly polishing

ONT assemblies have small errors that can be addressed through iterative polishing with Illumina libraries.

$ vi pilon.sh

Hit 'i' for insertion and type the following (edit FORWARD, REVERSE, LINE NAME, and GENOME):

#!/bin/bash
#SBATCH -n 8
#SBATCH -p highmem
#SBATCH --qos jlfierst
#SBATCH --mem=128G
#SBATCH --job-name=pilon
#SBATCH -e %J.err
#SBATCH -o %J.out


#Load Modules
module load bio/bioinfo-gcc
module load bio/samtools/1.9


FORWARD=[PATH TO FASTQ_1]
REVERSE=[PATH TO FASTQ_2]
LINE_NAME=PB127 ## YOUR LINE
mkdir ./pilon_out/

## ROUND 1 ##
GENOME=[ path to assembled genome]
#index genome 
bwa index ${GENOME}
#align reads
bwa mem -t 8 -M ${GENOME} ${FORWARD} ${REVERSE}  > ./pilon_out/bwa.sam
#sam to bam
samtools view -Sb ./pilon_out/bwa.sam > ./pilon_out/bwa.bam
##Sort and index the BAM 
samtools sort ./pilon_out/bwa.bam -o ./pilon_out/bwa.sort
samtools index ./pilon_out/bwa.sort

module load java/1.8.0
module load bio/bioinfo-java
##Pilon it 
java -Xmx12G -jar /share/apps/bioinfoJava/pilon-1.22.jar --genome ${GENOME} --frags ./pilon_out/bwa.sort --output ./pilon_out/${LINE_NAME}_pilon1
module unload java/1.8.0
module unload bio/bioinfo-java

## ROUND 2 ##
GENOME=./pilon_out/${LINE_NAME}_pilon1.fasta 
#index genome 
bwa index ${GENOME}
#align reads
bwa mem -t 8 -M ${GENOME} ${FORWARD} ${REVERSE}  > ./pilon_out/bwa.sam
#sam to bam
samtools view -Sb ./pilon_out/bwa.sam > ./pilon_out/bwa.bam
##Sort and index the BAM 
samtools sort ./pilon_out/bwa.bam -o ./pilon_out/bwa.sort
samtools index ./pilon_out/bwa.sort

module load java/1.8.0
module load bio/bioinfo-java
##Pilon it 
java -Xmx12G -jar /share/apps/bioinfoJava/pilon-1.22.jar --genome ${GENOME} --frags ./pilon_out/bwa.sort --output ./pilon_out/${LINE_NAME}_pilon2
module unload java/1.8.0
module unload bio/bioinfo-java

## ROUND 3 ##
GENOME=./pilon_out/${LINE_NAME}_pilon2.fasta 
#index genome 
bwa index ${GENOME}
#align reads
bwa mem -t 8 -M ${GENOME} ${FORWARD} ${REVERSE}  > ./pilon_out/bwa.sam
#sam to bam
samtools view -Sb ./pilon_out/bwa.sam > ./pilon_out/bwa.bam
##Sort and index the BAM 
samtools sort ./pilon_out/bwa.bam -o ./pilon_out/bwa.sort
samtools index ./pilon_out/bwa.sort

module load java/1.8.0
module load bio/bioinfo-java
##Pilon it 
java -Xmx12G -jar /share/apps/bioinfoJava/pilon-1.22.jar --genome ${GENOME} --frags ./pilon_out/bwa.sort --output ./pilon_out/${LINE_NAME}_pilon3
module unload java/1.8.0
module unload bio/bioinfo-java


## ROUND 4 ##
GENOME=./pilon_out/${LINE_NAME}_pilon3.fasta 
#index genome 
bwa index ${GENOME}
#align reads
bwa mem -t 8 -M ${GENOME} ${FORWARD} ${REVERSE}  > ./pilon_out/bwa.sam
#sam to bam
samtools view -Sb ./pilon_out/bwa.sam > ./pilon_out/bwa.bam
##Sort and index the BAM 
samtools sort ./pilon_out/bwa.bam -o ./pilon_out/bwa.sort
samtools index ./pilon_out/bwa.sort

module load java/1.8.0
module load bio/bioinfo-java
##Pilon it 
java -Xmx12G -jar /share/apps/bioinfoJava/pilon-1.22.jar --genome ${GENOME} --frags ./pilon_out/bwa.sort --output ./:pilon_out/${LINE_NAME}_pilon4

Exit by hitting the 'esc' button, typing ':wq'.

Submit your job

$ sbatch < pilon.sh

PART 4: Evaluation

4.1 QUAST

QUAST: Quality Assessment Tool for Genome Assemblies. QUAST can be used to evaluate genome statistics like N50 and misassemblies relative to a reference. If you don't have a reference it will estimate statistics like N50, N90, L50 and L90.

$ vi quast.sh Hit 'i' for insertion and type the following (edit the locations with your line name): QUAST without a reference

#!/bin/bash
#SBATCH -n 4
#SBATCH -p highmem
#SBATCH --qos jlfierst
#SBATCH --job-name=quast
#SBATCH --mem=100G

module load bio/quast/5.0

#quast.py -t 4 --eukaryote --plots-format pdf ./pilon_out/PB127_pilon4.fasta -o ./PB127_quast/
quast.py -t 4 --eukaryote --plots-format pdf ./pilon_out/DF5018_pilon4.fasta -o ./DF5018_quast/

Exit by hitting the 'esc' button, typing ':wq'.

Submit your job

$ sbatch < quast.sh

QUAST with a reference

$ python {quast location}/quast.py -t 12 --plots-format pdf -r {reference genome} {assembled sequence} -o {output name}

4.2 BUSCO

BUSCO searches assembled genome sequences for a set of genes thought to be conserved in single copy in a group of organisms.

First step is to copy the augustus config directory to your directory

Canu-flye:

cp -r /share/apps/augustus/augustus-3.3.2/config/ /jlf/USERNAME/augustus_config/

Nextdenovo:

cp -r /share/apps/augustus/augustus-3.3.2/config/ /home/USERNAME/augustus_config/

$ vi busco.sh Hit 'i' for insertion and type the following (edit the locations with your line name):

#!/bin/bash
#SBATCH -n 4
#SBATCH -p highmem
#SBATCH --qos jlfierst
#SBATCH --job-name=busco
#SBATCH --mem=100G


module load bio/busco
export AUGUSTUS_CONFIG_PATH="/jlf/USERNAME/augustus_config/" # replace username

busco -c 4 -m genome -i [PATH_To_POLISHED_GENOME] -o busco_[LINE] --lineage_dataset nematoda_odb10 --augustus_species caenorhabditis

4.3 Analyze retained heterozygosity with purge_haplotigs (https://bitbucket.org/mroachawri/purge_haplotigs/src/master/)

#!/bin/bash

# generate histogram
purge_haplotigs hist -b aligned.bam -g [genome].fasta -t 12

# view histogram to get low, medium, high values
purge_haplotigs cov -i aligned.bam.gencov -l 4 -m 17 -h 65 -o coverage_stats.csv -j 80 -s 80

#assign primary, haplotig, junk with -b aligned.bam to generate dotplots
purge_haplotigs purge -g [genome].fasta -c coverage_stats.csv -d -b aligned.bam

4.4 Decontamination

Blast vi blast.sh

Hit 'i' for insertion and type the following:

#!/bin/bash
#SBATCH -J BLAST
#SBATCH --qos jlfierst
#SBATCH -p highmem
#SBATCH -n 4
#SBATCH -o %J.out
#SBATCH -e %J.err


module load compilers/gcc/5.4.0
module load bio/blast/2.9.0
BLASTDB=/jlf/newblastdb
echo $BLASTDB 

blastn  -task megablast -query [PATH_TO_POLISHED_GENOME] -db nt -outfmt '6 qseqid staxids' -culling_limit 5 -evalue 1e-25 -out [LINE].blast.out

4.4.1 SIDR

PART 5: Annotation

5.1 Characterizing Repeats and Transposable Elements

RepeatModeler creates a custom library of repeats found in your assembled genome sequence. We are using RepeatModeler through TE-Tools

Launch the container

$ ./dfam-tetools.sh

Build the database

$ BuildDatabase -name [species_name] [genome.fasta]

Run RepeatModeler for de novo repeat identification and characterization

$ RepeatModeler -pa 8 -database [species_name]

Use the queryRepeatDatabase.pl script inside RepeatMasker/util to extract Rhabditida repeats

$ queryRepeatDatabase.pl -species rhabditida | grep -v "Species:" > Rhabditida.repeatmasker

Combine the files to create a library of de novo and known repeats

$ cat RM*/consensi.fa.classified Rhabditida.repeatmasker > [species_name].repeats

Finally, RepeatMasker creates a masked version of our assembled genome sequence. There are two versions of masking. Hard-masking means we replace every nucleotide in a repeat region with 'N' and soft-masking means we replace the normally capitalized nucleotides with lower-case nucleotides in repeat regions. Here we soft-mask (-xsmall) and do not mask low complexity elements (-nolow).

$ RepeatMasker -lib [species_name].repeats -pa 8 -xsmall -nolow [genome.fasta] 

5.1.2 EDTA

#!/bin/bash

EDTA.pl \
--genome [genome.fasta] \
--cds [genome.cdna.fasta] \ # Obtained from BRAKER2 in step 5.2
--curatedlib [Rhabditida.repeatmasker] --overwrite 1 --sensitive 1 --anno 1 --evaluate 1 --threads 10

5.2 Protein-coding gene annotation with BRAKER2

5.2.1 Align RNASeq with STAR

# Generate genome index
STAR --runThreadN 12 --runMode genomeGenerate --genomeDir [species_dir] --genomeSAindexNbases 12 --genomeFastaFiles [species_genome]

# Map the reads
STAR --runThreadN 12 --genomeDir [species_dir] --outSAMtype BAM Unsorted --twopassMode Basic --readFilesCommand zcat \ # if reads are zip-compressed
--readFilesIn [File_1.fastq.gz] [File_2.fastq.gz] 

5.2.2 Run BRAKER

braker.pl \
--workingdir=[output_dir] \
--species=[species_name] \
--cores=8 \
--genome=[assembly.masked] \
--bam=Aligned.out.bam \
--prot_seq=[protein.fasta] \
--GENEMARK_PATH=[GENEMARK_dir] \
--softmasking \
--useexisting

gtf2gff.pl < braker.gtf --gff3 --out=braker.gff3

After braker2 is finished we will create protein and fasta files from the native .gtf output. We can align the protein and/or mRNA sequences to the NCBI BLAST databases to check the validity of our annotations.

#!/bin/bash


DIR="[BRAKER2 .gtf location]"

conda activate agatenv

agat_sp_extract_sequences.pl -f ${DIR}_filtered.fasta --mrna -g braker.gff3 -o braker.mRNA.fasta
agat_sp_extract_sequences.pl -f ${DIR}_filtered.fasta -p -g braker.gff3 -o braker.protein.fasta

tblastn -db nt -query braker.protein.fasta \
-outfmt '6 qseqid qlen staxids bitscore std sscinames sskingdoms stitle' \
-num_threads 4 -evalue 0.01 -max_target_seqs 2 -out blast.out

5.4 Annotation statistics with AGAT

AGAT(https://github.com/NBISweden/AGAT#installation) is a tool for annotation editing and evaluation. We will install via conda and use it to evaluate annotation statistics. AGAT creates conflicts with some other aspects of conda and we will install/activate it into its own environment to manage the conflicts.

5.4.1 Install AGAT via conda(https://anaconda.org/bioconda/agat)

conda create -n agatenv
conda activate agatenv
conda install -c bioconda agat

5.4.2 Count genes and other features

conda activate agatenv
agat_sp_statistics.pl --gff {file}.gff3

5.5 Functional annotation with Interproscan (https://interproscan-docs.readthedocs.io/en/latest/HowToRun.html)

Generate interproscan annotations including GO terms and pathway information. Here is a sample command to do this:

interproscan.sh -i 356.protein.fasta -f tsv -dp -goterms -pa

Here, I am asking interproscan (interproscan.sh) to perform functional annotation on my proteome (356.protein.fasta) including gene ontology annotations (-goterms) and pathway information (-pa). I am asking for a tab-separated output file (-f tsv) and -dp is disable precalculated lookup service, we will calculated everything fresh for this genome.

5.6 Create pseudo-chromosomes with Ragtag

Caenorhabditis have highly conserved chromosome structure and we expect that large-scale rearrangements have not occurred between closely related strains. This is an assumption and it may not be true but we will operate under this for now. If we assume this we can use RagTag (https://github.com/malonge/RagTag) to scaffold our fragmented assembly based on a chromosome-scale assembly for a close relative, C. remanei PX506 (https://www.ncbi.nlm.nih.gov/genome/253?genome_assembly_id=771236).

RagTag is very fast, below is a script that can align our fragmented assembly to the chromosome-scale PX506 and create a new set of coordinates for our annotated genes.

#!/bin/bash

GENOME=534

ragtag.py scaffold GCA_010183535.1_CRPX506_genomic.fna {GENOME}.fasta -t 8

ragtag.py updategff braker.gff3 ./ragtag_output/ragtag.scaffold.agp > ragtag.{GENOME}.gff3

5.7 Align genomes with ProgressiveCactus and extract mutations, bed files and reconstructed ancestral sequences (https://github.com/glennhickey/progressiveCactus)

#!/bin/bash

export PATH=/[hal-release-V2.2/bin]:${PATH}
export PYTHONPATH=/[hal-release-V2.2]:${PYTHONPATH}

sudo docker run -d -v $(pwd):/data --rm -it quay.io/comparative-genomics-toolkit/cactus:v2.0.4 cactus /data/jobStore /data/worms.txt /data/output.hal # -d puts 	it in the background

sudo docker run -d -v $(pwd):/data --rm -it quay.io/comparative-genomics-toolkit/cactus:v2.0.4 hal2maf /data/output.hal --refGenome [root_genome] 		/data/[root_genome].maf

halBranchMutations output.hal [species] --refFile [species].bed --parentFile [species]_parent.bed

hal2fasta output.hal [ancestor] --upper --outFaPath /path/to/[ancestor].fasta

5.8 Estimate orthogroups with OrthoFinder

Create a directory with species proteomes (longest isoforms only) and run OrthoFinder (https://github.com/davidemms/OrthoFinder)

orthofinder -f ./[directory]/

5.9 Estimate gene family birth and death rates with CAFE5 (https://github.com/hahnlab/CAFE5)

#!/bin/bash

/path/to/CAFE5/bin/cafe5 -i [OrthoFinder_output].txt -t [tree].txt -e # estimate error in genome assembly and annotation

/path/to/CAFE5/bin/cafe5 -i [OrthoFinder_output].txt -t [tree].txt -k 3 -o k3 -eerror_model_02.txt # estimate with k=3