-
Notifications
You must be signed in to change notification settings - Fork 171
/
imagetracer_v1.2.6.js
1221 lines (995 loc) · 46.3 KB
/
imagetracer_v1.2.6.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
imagetracer.js version 1.2.6
Simple raster image tracer and vectorizer written in JavaScript.
*/
/*
The Unlicense / PUBLIC DOMAIN
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to http://unlicense.org/
*/
(function(){ 'use strict';
function ImageTracer(){
var _this = this;
this.versionnumber = '1.2.6',
////////////////////////////////////////////////////////////
//
// API
//
////////////////////////////////////////////////////////////
// Loading an image from a URL, tracing when loaded,
// then executing callback with the scaled svg string as argument
this.imageToSVG = function( url, callback, options ){
options = _this.checkoptions(options);
// loading image, tracing and callback
_this.loadImage(
url,
function(canvas){
callback(
_this.imagedataToSVG( _this.getImgdata(canvas), options )
);
},
options
);
},// End of imageToSVG()
// Tracing imagedata, then returning the scaled svg string
this.imagedataToSVG = function( imgd, options ){
options = _this.checkoptions(options);
// tracing imagedata
var td = _this.imagedataToTracedata( imgd, options );
// returning SVG string
return _this.getsvgstring(td, options);
},// End of imagedataToSVG()
// Loading an image from a URL, tracing when loaded,
// then executing callback with tracedata as argument
this.imageToTracedata = function( url, callback, options ){
options = _this.checkoptions(options);
// loading image, tracing and callback
_this.loadImage(
url,
function(canvas){
callback(
_this.imagedataToTracedata( _this.getImgdata(canvas), options )
);
},
options
);
},// End of imageToTracedata()
// Tracing imagedata, then returning tracedata (layers with paths, palette, image size)
this.imagedataToTracedata = function( imgd, options ){
options = _this.checkoptions(options);
// 1. Color quantization
var ii = _this.colorquantization( imgd, options );
if(options.layering === 0){// Sequential layering
// create tracedata object
var tracedata = {
layers : [],
palette : ii.palette,
width : ii.array[0].length-2,
height : ii.array.length-2
};
// Loop to trace each color layer
for(var colornum=0; colornum<ii.palette.length; colornum++){
// layeringstep -> pathscan -> internodes -> batchtracepaths
var tracedlayer =
_this.batchtracepaths(
_this.internodes(
_this.pathscan(
_this.layeringstep( ii, colornum ),
options.pathomit
),
options
),
options.ltres,
options.qtres
);
// adding traced layer
tracedata.layers.push(tracedlayer);
}// End of color loop
}else{// Parallel layering
// 2. Layer separation and edge detection
var ls = _this.layering( ii );
// Optional edge node visualization
if(options.layercontainerid){ _this.drawLayers( ls, _this.specpalette, options.scale, options.layercontainerid ); }
// 3. Batch pathscan
var bps = _this.batchpathscan( ls, options.pathomit );
// 4. Batch interpollation
var bis = _this.batchinternodes( bps, options );
// 5. Batch tracing and creating tracedata object
var tracedata = {
layers : _this.batchtracelayers( bis, options.ltres, options.qtres ),
palette : ii.palette,
width : imgd.width,
height : imgd.height
};
}// End of parallel layering
// return tracedata
return tracedata;
},// End of imagedataToTracedata()
this.optionpresets = {
'default': {
// Tracing
corsenabled : false,
ltres : 1,
qtres : 1,
pathomit : 8,
rightangleenhance : true,
// Color quantization
colorsampling : 2,
numberofcolors : 16,
mincolorratio : 0,
colorquantcycles : 3,
// Layering method
layering : 0,
// SVG rendering
strokewidth : 1,
linefilter : false,
scale : 1,
roundcoords : 1,
viewbox : false,
desc : false,
lcpr : 0,
qcpr : 0,
// Blur
blurradius : 0,
blurdelta : 20
},
'posterized1': { colorsampling:0, numberofcolors:2 },
'posterized2': { numberofcolors:4, blurradius:5 },
'curvy': { ltres:0.01, linefilter:true, rightangleenhance:false },
'sharp': { qtres:0.01, linefilter:false },
'detailed': { pathomit:0, roundcoords:2, ltres:0.5, qtres:0.5, numberofcolors:64 },
'smoothed': { blurradius:5, blurdelta: 64 },
'grayscale': { colorsampling:0, colorquantcycles:1, numberofcolors:7 },
'fixedpalette': { colorsampling:0, colorquantcycles:1, numberofcolors:27 },
'randomsampling1': { colorsampling:1, numberofcolors:8 },
'randomsampling2': { colorsampling:1, numberofcolors:64 },
'artistic1': { colorsampling:0, colorquantcycles:1, pathomit:0, blurradius:5, blurdelta: 64, ltres:0.01, linefilter:true, numberofcolors:16, strokewidth:2 },
'artistic2': { qtres:0.01, colorsampling:0, colorquantcycles:1, numberofcolors:4, strokewidth:0 },
'artistic3': { qtres:10, ltres:10, numberofcolors:8 },
'artistic4': { qtres:10, ltres:10, numberofcolors:64, blurradius:5, blurdelta: 256, strokewidth:2 },
'posterized3': { ltres: 1, qtres: 1, pathomit: 20, rightangleenhance: true, colorsampling: 0, numberofcolors: 3,
mincolorratio: 0, colorquantcycles: 3, blurradius: 3, blurdelta: 20, strokewidth: 0, linefilter: false,
roundcoords: 1, pal: [ { r: 0, g: 0, b: 100, a: 255 }, { r: 255, g: 255, b: 255, a: 255 } ] }
},// End of optionpresets
// creating options object, setting defaults for missing values
this.checkoptions = function(options){
options = options || {};
// Option preset
if(typeof options === 'string'){
options = options.toLowerCase();
if( _this.optionpresets[options] ){ options = _this.optionpresets[options]; }else{ options = {}; }
}
// Defaults
var ok = Object.keys(_this.optionpresets['default']);
for(var k=0; k<ok.length; k++){
if(!options.hasOwnProperty(ok[k])){ options[ok[k]] = _this.optionpresets['default'][ok[k]]; }
}
// options.pal is not defined here, the custom palette should be added externally: options.pal = [ { 'r':0, 'g':0, 'b':0, 'a':255 }, {...}, ... ];
// options.layercontainerid is not defined here, can be added externally: options.layercontainerid = 'mydiv'; ... <div id="mydiv"></div>
return options;
},// End of checkoptions()
////////////////////////////////////////////////////////////
//
// Vectorizing functions
//
////////////////////////////////////////////////////////////
// 1. Color quantization
// Using a form of k-means clustering repeatead options.colorquantcycles times. http://en.wikipedia.org/wiki/Color_quantization
this.colorquantization = function( imgd, options ){
var arr = [], idx=0, cd,cdl,ci, paletteacc = [], pixelnum = imgd.width * imgd.height, i, j, k, cnt, palette;
// imgd.data must be RGBA, not just RGB
if( imgd.data.length < pixelnum * 4 ){
var newimgddata = new Uint8ClampedArray(pixelnum * 4);
for(var pxcnt = 0; pxcnt < pixelnum ; pxcnt++){
newimgddata[pxcnt*4 ] = imgd.data[pxcnt*3 ];
newimgddata[pxcnt*4+1] = imgd.data[pxcnt*3+1];
newimgddata[pxcnt*4+2] = imgd.data[pxcnt*3+2];
newimgddata[pxcnt*4+3] = 255;
}
imgd.data = newimgddata;
}// End of RGBA imgd.data check
// Filling arr (color index array) with -1
for( j=0; j<imgd.height+2; j++ ){ arr[j]=[]; for(i=0; i<imgd.width+2 ; i++){ arr[j][i] = -1; } }
// Use custom palette if pal is defined or sample / generate custom length palette
if(options.pal){
palette = options.pal;
}else if(options.colorsampling === 0){
palette = _this.generatepalette(options.numberofcolors);
}else if(options.colorsampling === 1){
palette = _this.samplepalette( options.numberofcolors, imgd );
}else{
palette = _this.samplepalette2( options.numberofcolors, imgd );
}
// Selective Gaussian blur preprocessing
if( options.blurradius > 0 ){ imgd = _this.blur( imgd, options.blurradius, options.blurdelta ); }
// Repeat clustering step options.colorquantcycles times
for( cnt=0; cnt < options.colorquantcycles; cnt++ ){
// Average colors from the second iteration
if(cnt>0){
// averaging paletteacc for palette
for( k=0; k < palette.length; k++ ){
// averaging
if( paletteacc[k].n > 0 ){
palette[k] = { r: Math.floor( paletteacc[k].r / paletteacc[k].n ),
g: Math.floor( paletteacc[k].g / paletteacc[k].n ),
b: Math.floor( paletteacc[k].b / paletteacc[k].n ),
a: Math.floor( paletteacc[k].a / paletteacc[k].n ) };
}
// Randomizing a color, if there are too few pixels and there will be a new cycle
if( ( paletteacc[k].n/pixelnum < options.mincolorratio ) && ( cnt < options.colorquantcycles-1 ) ){
palette[k] = { r: Math.floor(Math.random()*255),
g: Math.floor(Math.random()*255),
b: Math.floor(Math.random()*255),
a: Math.floor(Math.random()*255) };
}
}// End of palette loop
}// End of Average colors from the second iteration
// Reseting palette accumulator for averaging
for( i=0; i < palette.length; i++ ){ paletteacc[i] = { r:0, g:0, b:0, a:0, n:0 }; }
// loop through all pixels
for( j=0; j < imgd.height; j++ ){
for( i=0; i < imgd.width; i++ ){
// pixel index
idx = (j*imgd.width+i)*4;
// find closest color from palette by measuring (rectilinear) color distance between this pixel and all palette colors
ci=0; cdl = 1024; // 4 * 256 is the maximum RGBA distance
for( k=0; k<palette.length; k++ ){
// In my experience, https://en.wikipedia.org/wiki/Rectilinear_distance works better than https://en.wikipedia.org/wiki/Euclidean_distance
cd =
( palette[k].r > imgd.data[idx ] ? palette[k].r - imgd.data[idx ] : imgd.data[idx ] - palette[k].r ) +
( palette[k].g > imgd.data[idx+1] ? palette[k].g - imgd.data[idx+1] : imgd.data[idx+1] - palette[k].g ) +
( palette[k].b > imgd.data[idx+2] ? palette[k].b - imgd.data[idx+2] : imgd.data[idx+2] - palette[k].b ) +
( palette[k].a > imgd.data[idx+3] ? palette[k].a - imgd.data[idx+3] : imgd.data[idx+3] - palette[k].a );
// Remember this color if this is the closest yet
if(cd<cdl){ cdl = cd; ci = k; }
}// End of palette loop
// add to palettacc
paletteacc[ci].r += imgd.data[idx ];
paletteacc[ci].g += imgd.data[idx+1];
paletteacc[ci].b += imgd.data[idx+2];
paletteacc[ci].a += imgd.data[idx+3];
paletteacc[ci].n++;
// update the indexed color array
arr[j+1][i+1] = ci;
}// End of i loop
}// End of j loop
}// End of Repeat clustering step options.colorquantcycles times
return { array:arr, palette:palette };
},// End of colorquantization()
// Sampling a palette from imagedata
this.samplepalette = function( numberofcolors, imgd ){
var idx, palette=[];
for(var i=0; i<numberofcolors; i++){
idx = Math.floor( Math.random() * imgd.data.length / 4 ) * 4;
palette.push({ r:imgd.data[idx ], g:imgd.data[idx+1], b:imgd.data[idx+2], a:imgd.data[idx+3] });
}
return palette;
},// End of samplepalette()
// Deterministic sampling a palette from imagedata: rectangular grid
this.samplepalette2 = function( numberofcolors, imgd ){
var idx, palette=[], ni = Math.ceil(Math.sqrt(numberofcolors)), nj = Math.ceil(numberofcolors/ni),
vx = imgd.width / (ni+1), vy = imgd.height / (nj+1);
for(var j=0; j<nj; j++){
for(var i=0; i<ni; i++){
if(palette.length === numberofcolors){
break;
}else{
idx = Math.floor( ((j+1)*vy) * imgd.width + ((i+1)*vx) ) * 4;
palette.push( { r:imgd.data[idx], g:imgd.data[idx+1], b:imgd.data[idx+2], a:imgd.data[idx+3] } );
}
}
}
return palette;
},// End of samplepalette2()
// Generating a palette with numberofcolors
this.generatepalette = function(numberofcolors){
var palette = [], rcnt, gcnt, bcnt;
if(numberofcolors<8){
// Grayscale
var graystep = Math.floor(255/(numberofcolors-1));
for(var i=0; i<numberofcolors; i++){ palette.push({ r:i*graystep, g:i*graystep, b:i*graystep, a:255 }); }
}else{
// RGB color cube
var colorqnum = Math.floor(Math.pow(numberofcolors, 1/3)), // Number of points on each edge on the RGB color cube
colorstep = Math.floor(255/(colorqnum-1)), // distance between points
rndnum = numberofcolors - colorqnum*colorqnum*colorqnum; // number of random colors
for(rcnt=0; rcnt<colorqnum; rcnt++){
for(gcnt=0; gcnt<colorqnum; gcnt++){
for(bcnt=0; bcnt<colorqnum; bcnt++){
palette.push( { r:rcnt*colorstep, g:gcnt*colorstep, b:bcnt*colorstep, a:255 } );
}// End of blue loop
}// End of green loop
}// End of red loop
// Rest is random
for(rcnt=0; rcnt<rndnum; rcnt++){ palette.push({ r:Math.floor(Math.random()*255), g:Math.floor(Math.random()*255), b:Math.floor(Math.random()*255), a:Math.floor(Math.random()*255) }); }
}// End of numberofcolors check
return palette;
},// End of generatepalette()
// 2. Layer separation and edge detection
// Edge node types ( ▓: this layer or 1; ░: not this layer or 0 )
// 12 ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓
// 48 ░░ ░░ ░░ ░░ ░▓ ░▓ ░▓ ░▓ ▓░ ▓░ ▓░ ▓░ ▓▓ ▓▓ ▓▓ ▓▓
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
this.layering = function(ii){
// Creating layers for each indexed color in arr
var layers = [], val=0, ah = ii.array.length, aw = ii.array[0].length, n1,n2,n3,n4,n5,n6,n7,n8, i, j, k;
// Create layers
for(k=0; k<ii.palette.length; k++){
layers[k] = [];
for(j=0; j<ah; j++){
layers[k][j] = [];
for(i=0; i<aw; i++){
layers[k][j][i]=0;
}
}
}
// Looping through all pixels and calculating edge node type
for(j=1; j<ah-1; j++){
for(i=1; i<aw-1; i++){
// This pixel's indexed color
val = ii.array[j][i];
// Are neighbor pixel colors the same?
n1 = ii.array[j-1][i-1]===val ? 1 : 0;
n2 = ii.array[j-1][i ]===val ? 1 : 0;
n3 = ii.array[j-1][i+1]===val ? 1 : 0;
n4 = ii.array[j ][i-1]===val ? 1 : 0;
n5 = ii.array[j ][i+1]===val ? 1 : 0;
n6 = ii.array[j+1][i-1]===val ? 1 : 0;
n7 = ii.array[j+1][i ]===val ? 1 : 0;
n8 = ii.array[j+1][i+1]===val ? 1 : 0;
// this pixel's type and looking back on previous pixels
layers[val][j+1][i+1] = 1 + n5 * 2 + n8 * 4 + n7 * 8 ;
if(!n4){ layers[val][j+1][i ] = 0 + 2 + n7 * 4 + n6 * 8 ; }
if(!n2){ layers[val][j ][i+1] = 0 + n3*2 + n5 * 4 + 8 ; }
if(!n1){ layers[val][j ][i ] = 0 + n2*2 + 4 + n4 * 8 ; }
}// End of i loop
}// End of j loop
return layers;
},// End of layering()
// 2. Layer separation and edge detection
// Edge node types ( ▓: this layer or 1; ░: not this layer or 0 )
// 12 ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓ ░░ ▓░ ░▓ ▓▓
// 48 ░░ ░░ ░░ ░░ ░▓ ░▓ ░▓ ░▓ ▓░ ▓░ ▓░ ▓░ ▓▓ ▓▓ ▓▓ ▓▓
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
this.layeringstep = function(ii,cnum){
// Creating layers for each indexed color in arr
var layer = [], val=0, ah = ii.array.length, aw = ii.array[0].length, n1,n2,n3,n4,n5,n6,n7,n8, i, j, k;
// Create layer
for(j=0; j<ah; j++){
layer[j] = [];
for(i=0; i<aw; i++){
layer[j][i]=0;
}
}
// Looping through all pixels and calculating edge node type
for(j=1; j<ah; j++){
for(i=1; i<aw; i++){
layer[j][i] =
( ii.array[j-1][i-1]===cnum ? 1 : 0 ) +
( ii.array[j-1][i]===cnum ? 2 : 0 ) +
( ii.array[j][i-1]===cnum ? 8 : 0 ) +
( ii.array[j][i]===cnum ? 4 : 0 )
;
}// End of i loop
}// End of j loop
return layer;
},// End of layeringstep()
// Point in polygon test
this.pointinpoly = function( p, pa ){
var isin=false;
for(var i=0,j=pa.length-1; i<pa.length; j=i++){
isin =
( ((pa[i].y > p.y) !== (pa[j].y > p.y)) && (p.x < (pa[j].x - pa[i].x) * (p.y - pa[i].y) / (pa[j].y - pa[i].y) + pa[i].x) )
? !isin : isin;
}
return isin;
},
// Lookup tables for pathscan
// pathscan_combined_lookup[ arr[py][px] ][ dir ] = [nextarrpypx, nextdir, deltapx, deltapy];
this.pathscan_combined_lookup = [
[[-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1]],// arr[py][px]===0 is invalid
[[ 0, 1, 0,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [ 0, 2,-1, 0]],
[[-1,-1,-1,-1], [-1,-1,-1,-1], [ 0, 1, 0,-1], [ 0, 0, 1, 0]],
[[ 0, 0, 1, 0], [-1,-1,-1,-1], [ 0, 2,-1, 0], [-1,-1,-1,-1]],
[[-1,-1,-1,-1], [ 0, 0, 1, 0], [ 0, 3, 0, 1], [-1,-1,-1,-1]],
[[13, 3, 0, 1], [13, 2,-1, 0], [ 7, 1, 0,-1], [ 7, 0, 1, 0]],
[[-1,-1,-1,-1], [ 0, 1, 0,-1], [-1,-1,-1,-1], [ 0, 3, 0, 1]],
[[ 0, 3, 0, 1], [ 0, 2,-1, 0], [-1,-1,-1,-1], [-1,-1,-1,-1]],
[[ 0, 3, 0, 1], [ 0, 2,-1, 0], [-1,-1,-1,-1], [-1,-1,-1,-1]],
[[-1,-1,-1,-1], [ 0, 1, 0,-1], [-1,-1,-1,-1], [ 0, 3, 0, 1]],
[[11, 1, 0,-1], [14, 0, 1, 0], [14, 3, 0, 1], [11, 2,-1, 0]],
[[-1,-1,-1,-1], [ 0, 0, 1, 0], [ 0, 3, 0, 1], [-1,-1,-1,-1]],
[[ 0, 0, 1, 0], [-1,-1,-1,-1], [ 0, 2,-1, 0], [-1,-1,-1,-1]],
[[-1,-1,-1,-1], [-1,-1,-1,-1], [ 0, 1, 0,-1], [ 0, 0, 1, 0]],
[[ 0, 1, 0,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [ 0, 2,-1, 0]],
[[-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1]]// arr[py][px]===15 is invalid
],
// 3. Walking through an edge node array, discarding edge node types 0 and 15 and creating paths from the rest.
// Walk directions (dir): 0 > ; 1 ^ ; 2 < ; 3 v
this.pathscan = function( arr, pathomit ){
var paths=[], pacnt=0, pcnt=0, px=0, py=0, w = arr[0].length, h = arr.length,
dir=0, pathfinished=true, holepath=false, lookuprow;
for(var j=0; j<h; j++){
for(var i=0; i<w; i++){
if( (arr[j][i] == 4) || ( arr[j][i] == 11) ){ // Other values are not valid
// Init
px = i; py = j;
paths[pacnt] = {};
paths[pacnt].points = [];
paths[pacnt].boundingbox = [px,py,px,py];
paths[pacnt].holechildren = [];
pathfinished = false;
pcnt=0;
holepath = (arr[j][i]==11);
dir = 1;
// Path points loop
while(!pathfinished){
// New path point
paths[pacnt].points[pcnt] = {};
paths[pacnt].points[pcnt].x = px-1;
paths[pacnt].points[pcnt].y = py-1;
paths[pacnt].points[pcnt].t = arr[py][px];
// Bounding box
if( (px-1) < paths[pacnt].boundingbox[0] ){ paths[pacnt].boundingbox[0] = px-1; }
if( (px-1) > paths[pacnt].boundingbox[2] ){ paths[pacnt].boundingbox[2] = px-1; }
if( (py-1) < paths[pacnt].boundingbox[1] ){ paths[pacnt].boundingbox[1] = py-1; }
if( (py-1) > paths[pacnt].boundingbox[3] ){ paths[pacnt].boundingbox[3] = py-1; }
// Next: look up the replacement, direction and coordinate changes = clear this cell, turn if required, walk forward
lookuprow = _this.pathscan_combined_lookup[ arr[py][px] ][ dir ];
arr[py][px] = lookuprow[0]; dir = lookuprow[1]; px += lookuprow[2]; py += lookuprow[3];
// Close path
if( (px-1 === paths[pacnt].points[0].x ) && ( py-1 === paths[pacnt].points[0].y ) ){
pathfinished = true;
// Discarding paths shorter than pathomit
if( paths[pacnt].points.length < pathomit ){
paths.pop();
}else{
paths[pacnt].isholepath = holepath ? true : false;
// Finding the parent shape for this hole
if(holepath){
var parentidx = 0, parentbbox = [-1,-1,w+1,h+1];
for(var parentcnt=0; parentcnt < pacnt; parentcnt++){
if( (!paths[parentcnt].isholepath) &&
_this.boundingboxincludes( paths[parentcnt].boundingbox , paths[pacnt].boundingbox ) &&
_this.boundingboxincludes( parentbbox , paths[parentcnt].boundingbox ) &&
_this.pointinpoly( paths[pacnt].points[0], paths[parentcnt].points )
){
parentidx = parentcnt;
parentbbox = paths[parentcnt].boundingbox;
}
}
paths[parentidx].holechildren.push( pacnt );
}// End of holepath parent finding
pacnt++;
}
}// End of Close path
pcnt++;
}// End of Path points loop
}// End of Follow path
}// End of i loop
}// End of j loop
return paths;
},// End of pathscan()
this.boundingboxincludes = function( parentbbox, childbbox ){
return ( ( parentbbox[0] < childbbox[0] ) && ( parentbbox[1] < childbbox[1] ) && ( parentbbox[2] > childbbox[2] ) && ( parentbbox[3] > childbbox[3] ) );
},// End of boundingboxincludes()
// 3. Batch pathscan
this.batchpathscan = function( layers, pathomit ){
var bpaths = [];
for(var k in layers){
if(!layers.hasOwnProperty(k)){ continue; }
bpaths[k] = _this.pathscan( layers[k], pathomit );
}
return bpaths;
},
// 4. interpollating between path points for nodes with 8 directions ( East, SouthEast, S, SW, W, NW, N, NE )
this.internodes = function( paths, options ){
var ins = [], palen=0, nextidx=0, nextidx2=0, previdx=0, previdx2=0, pacnt, pcnt;
// paths loop
for(pacnt=0; pacnt<paths.length; pacnt++){
ins[pacnt] = {};
ins[pacnt].points = [];
ins[pacnt].boundingbox = paths[pacnt].boundingbox;
ins[pacnt].holechildren = paths[pacnt].holechildren;
ins[pacnt].isholepath = paths[pacnt].isholepath;
palen = paths[pacnt].points.length;
// pathpoints loop
for(pcnt=0; pcnt<palen; pcnt++){
// next and previous point indexes
nextidx = (pcnt+1)%palen; nextidx2 = (pcnt+2)%palen; previdx = (pcnt-1+palen)%palen; previdx2 = (pcnt-2+palen)%palen;
// right angle enhance
if( options.rightangleenhance && _this.testrightangle( paths[pacnt], previdx2, previdx, pcnt, nextidx, nextidx2 ) ){
// Fix previous direction
if(ins[pacnt].points.length > 0){
ins[pacnt].points[ ins[pacnt].points.length-1 ].linesegment = _this.getdirection(
ins[pacnt].points[ ins[pacnt].points.length-1 ].x,
ins[pacnt].points[ ins[pacnt].points.length-1 ].y,
paths[pacnt].points[pcnt].x,
paths[pacnt].points[pcnt].y
);
}
// This corner point
ins[pacnt].points.push({
x : paths[pacnt].points[pcnt].x,
y : paths[pacnt].points[pcnt].y,
linesegment : _this.getdirection(
paths[pacnt].points[pcnt].x,
paths[pacnt].points[pcnt].y,
(( paths[pacnt].points[pcnt].x + paths[pacnt].points[nextidx].x ) /2),
(( paths[pacnt].points[pcnt].y + paths[pacnt].points[nextidx].y ) /2)
)
});
}// End of right angle enhance
// interpolate between two path points
ins[pacnt].points.push({
x : (( paths[pacnt].points[pcnt].x + paths[pacnt].points[nextidx].x ) /2),
y : (( paths[pacnt].points[pcnt].y + paths[pacnt].points[nextidx].y ) /2),
linesegment : _this.getdirection(
(( paths[pacnt].points[pcnt].x + paths[pacnt].points[nextidx].x ) /2),
(( paths[pacnt].points[pcnt].y + paths[pacnt].points[nextidx].y ) /2),
(( paths[pacnt].points[nextidx].x + paths[pacnt].points[nextidx2].x ) /2),
(( paths[pacnt].points[nextidx].y + paths[pacnt].points[nextidx2].y ) /2)
)
});
}// End of pathpoints loop
}// End of paths loop
return ins;
},// End of internodes()
this.testrightangle = function( path, idx1, idx2, idx3, idx4, idx5 ){
return ( (( path.points[idx3].x === path.points[idx1].x) &&
( path.points[idx3].x === path.points[idx2].x) &&
( path.points[idx3].y === path.points[idx4].y) &&
( path.points[idx3].y === path.points[idx5].y)
) ||
(( path.points[idx3].y === path.points[idx1].y) &&
( path.points[idx3].y === path.points[idx2].y) &&
( path.points[idx3].x === path.points[idx4].x) &&
( path.points[idx3].x === path.points[idx5].x)
)
);
},// End of testrightangle()
this.getdirection = function( x1, y1, x2, y2 ){
var val = 8;
if(x1 < x2){
if (y1 < y2){ val = 1; }// SouthEast
else if(y1 > y2){ val = 7; }// NE
else { val = 0; }// E
}else if(x1 > x2){
if (y1 < y2){ val = 3; }// SW
else if(y1 > y2){ val = 5; }// NW
else { val = 4; }// W
}else{
if (y1 < y2){ val = 2; }// S
else if(y1 > y2){ val = 6; }// N
else { val = 8; }// center, this should not happen
}
return val;
},// End of getdirection()
// 4. Batch interpollation
this.batchinternodes = function( bpaths, options ){
var binternodes = [];
for (var k in bpaths) {
if(!bpaths.hasOwnProperty(k)){ continue; }
binternodes[k] = _this.internodes(bpaths[k], options);
}
return binternodes;
},
// 5. tracepath() : recursively trying to fit straight and quadratic spline segments on the 8 direction internode path
// 5.1. Find sequences of points with only 2 segment types
// 5.2. Fit a straight line on the sequence
// 5.3. If the straight line fails (distance error > ltres), find the point with the biggest error
// 5.4. Fit a quadratic spline through errorpoint (project this to get controlpoint), then measure errors on every point in the sequence
// 5.5. If the spline fails (distance error > qtres), find the point with the biggest error, set splitpoint = fitting point
// 5.6. Split sequence and recursively apply 5.2. - 5.6. to startpoint-splitpoint and splitpoint-endpoint sequences
this.tracepath = function( path, ltres, qtres ){
var pcnt=0, segtype1, segtype2, seqend, smp = {};
smp.segments = [];
smp.boundingbox = path.boundingbox;
smp.holechildren = path.holechildren;
smp.isholepath = path.isholepath;
while(pcnt < path.points.length){
// 5.1. Find sequences of points with only 2 segment types
segtype1 = path.points[pcnt].linesegment; segtype2 = -1; seqend=pcnt+1;
while(
((path.points[seqend].linesegment === segtype1) || (path.points[seqend].linesegment === segtype2) || (segtype2 === -1))
&& (seqend < path.points.length-1) ){
if((path.points[seqend].linesegment!==segtype1) && (segtype2===-1)){ segtype2 = path.points[seqend].linesegment; }
seqend++;
}
if(seqend === path.points.length-1){ seqend = 0; }
// 5.2. - 5.6. Split sequence and recursively apply 5.2. - 5.6. to startpoint-splitpoint and splitpoint-endpoint sequences
smp.segments = smp.segments.concat( _this.fitseq(path, ltres, qtres, pcnt, seqend) );
// forward pcnt;
if(seqend>0){ pcnt = seqend; }else{ pcnt = path.points.length; }
}// End of pcnt loop
return smp;
},// End of tracepath()
// 5.2. - 5.6. recursively fitting a straight or quadratic line segment on this sequence of path nodes,
// called from tracepath()
this.fitseq = function( path, ltres, qtres, seqstart, seqend ){
// return if invalid seqend
if( (seqend>path.points.length) || (seqend<0) ){ return []; }
// variables
var errorpoint=seqstart, errorval=0, curvepass=true, px, py, dist2;
var tl = (seqend-seqstart); if(tl<0){ tl += path.points.length; }
var vx = (path.points[seqend].x-path.points[seqstart].x) / tl,
vy = (path.points[seqend].y-path.points[seqstart].y) / tl;
// 5.2. Fit a straight line on the sequence
var pcnt = (seqstart+1) % path.points.length, pl;
while(pcnt != seqend){
pl = pcnt-seqstart; if(pl<0){ pl += path.points.length; }
px = path.points[seqstart].x + vx * pl; py = path.points[seqstart].y + vy * pl;
dist2 = (path.points[pcnt].x-px)*(path.points[pcnt].x-px) + (path.points[pcnt].y-py)*(path.points[pcnt].y-py);
if(dist2>ltres){curvepass=false;}
if(dist2>errorval){ errorpoint=pcnt; errorval=dist2; }
pcnt = (pcnt+1)%path.points.length;
}
// return straight line if fits
if(curvepass){ return [{ type:'L', x1:path.points[seqstart].x, y1:path.points[seqstart].y, x2:path.points[seqend].x, y2:path.points[seqend].y }]; }
// 5.3. If the straight line fails (distance error>ltres), find the point with the biggest error
var fitpoint = errorpoint; curvepass = true; errorval = 0;
// 5.4. Fit a quadratic spline through this point, measure errors on every point in the sequence
// helpers and projecting to get control point
var t=(fitpoint-seqstart)/tl, t1=(1-t)*(1-t), t2=2*(1-t)*t, t3=t*t;
var cpx = (t1*path.points[seqstart].x + t3*path.points[seqend].x - path.points[fitpoint].x)/-t2 ,
cpy = (t1*path.points[seqstart].y + t3*path.points[seqend].y - path.points[fitpoint].y)/-t2 ;
// Check every point
pcnt = seqstart+1;
while(pcnt != seqend){
t=(pcnt-seqstart)/tl; t1=(1-t)*(1-t); t2=2*(1-t)*t; t3=t*t;
px = t1 * path.points[seqstart].x + t2 * cpx + t3 * path.points[seqend].x;
py = t1 * path.points[seqstart].y + t2 * cpy + t3 * path.points[seqend].y;
dist2 = (path.points[pcnt].x-px)*(path.points[pcnt].x-px) + (path.points[pcnt].y-py)*(path.points[pcnt].y-py);
if(dist2>qtres){curvepass=false;}
if(dist2>errorval){ errorpoint=pcnt; errorval=dist2; }
pcnt = (pcnt+1)%path.points.length;
}
// return spline if fits
if(curvepass){ return [{ type:'Q', x1:path.points[seqstart].x, y1:path.points[seqstart].y, x2:cpx, y2:cpy, x3:path.points[seqend].x, y3:path.points[seqend].y }]; }
// 5.5. If the spline fails (distance error>qtres), find the point with the biggest error
var splitpoint = fitpoint; // Earlier: Math.floor((fitpoint + errorpoint)/2);
// 5.6. Split sequence and recursively apply 5.2. - 5.6. to startpoint-splitpoint and splitpoint-endpoint sequences
return _this.fitseq( path, ltres, qtres, seqstart, splitpoint ).concat(
_this.fitseq( path, ltres, qtres, splitpoint, seqend ) );
},// End of fitseq()
// 5. Batch tracing paths
this.batchtracepaths = function(internodepaths,ltres,qtres){
var btracedpaths = [];
for(var k in internodepaths){
if(!internodepaths.hasOwnProperty(k)){ continue; }
btracedpaths.push( _this.tracepath(internodepaths[k],ltres,qtres) );
}
return btracedpaths;
},
// 5. Batch tracing layers
this.batchtracelayers = function(binternodes, ltres, qtres){
var btbis = [];
for(var k in binternodes){
if(!binternodes.hasOwnProperty(k)){ continue; }
btbis[k] = _this.batchtracepaths(binternodes[k], ltres, qtres);
}
return btbis;
},
////////////////////////////////////////////////////////////
//
// SVG Drawing functions
//
////////////////////////////////////////////////////////////
// Rounding to given decimals https://stackoverflow.com/questions/11832914/round-to-at-most-2-decimal-places-in-javascript
this.roundtodec = function(val,places){ return +val.toFixed(places); },
// Getting SVG path element string from a traced path
this.svgpathstring = function( tracedata, lnum, pathnum, options ){
var layer = tracedata.layers[lnum], smp = layer[pathnum], str='', pcnt;
// Line filter
if(options.linefilter && (smp.segments.length < 3)){ return str; }
// Starting path element, desc contains layer and path number
str = '<path '+
( options.desc ? ('desc="l '+lnum+' p '+pathnum+'" ') : '' ) +
_this.tosvgcolorstr(tracedata.palette[lnum], options) +
'd="';
// Creating non-hole path string
if( options.roundcoords === -1 ){
str += 'M '+ smp.segments[0].x1 * options.scale +' '+ smp.segments[0].y1 * options.scale +' ';
for(pcnt=0; pcnt<smp.segments.length; pcnt++){
str += smp.segments[pcnt].type +' '+ smp.segments[pcnt].x2 * options.scale +' '+ smp.segments[pcnt].y2 * options.scale +' ';
if(smp.segments[pcnt].hasOwnProperty('x3')){
str += smp.segments[pcnt].x3 * options.scale +' '+ smp.segments[pcnt].y3 * options.scale +' ';
}
}
str += 'Z ';
}else{
str += 'M '+ _this.roundtodec( smp.segments[0].x1 * options.scale, options.roundcoords ) +' '+ _this.roundtodec( smp.segments[0].y1 * options.scale, options.roundcoords ) +' ';
for(pcnt=0; pcnt<smp.segments.length; pcnt++){
str += smp.segments[pcnt].type +' '+ _this.roundtodec( smp.segments[pcnt].x2 * options.scale, options.roundcoords ) +' '+ _this.roundtodec( smp.segments[pcnt].y2 * options.scale, options.roundcoords ) +' ';
if(smp.segments[pcnt].hasOwnProperty('x3')){
str += _this.roundtodec( smp.segments[pcnt].x3 * options.scale, options.roundcoords ) +' '+ _this.roundtodec( smp.segments[pcnt].y3 * options.scale, options.roundcoords ) +' ';
}
}
str += 'Z ';
}// End of creating non-hole path string
// Hole children
for( var hcnt=0; hcnt < smp.holechildren.length; hcnt++){
var hsmp = layer[ smp.holechildren[hcnt] ];
// Creating hole path string
if( options.roundcoords === -1 ){
if(hsmp.segments[ hsmp.segments.length-1 ].hasOwnProperty('x3')){
str += 'M '+ hsmp.segments[ hsmp.segments.length-1 ].x3 * options.scale +' '+ hsmp.segments[ hsmp.segments.length-1 ].y3 * options.scale +' ';
}else{
str += 'M '+ hsmp.segments[ hsmp.segments.length-1 ].x2 * options.scale +' '+ hsmp.segments[ hsmp.segments.length-1 ].y2 * options.scale +' ';
}
for(pcnt = hsmp.segments.length-1; pcnt >= 0; pcnt--){
str += hsmp.segments[pcnt].type +' ';
if(hsmp.segments[pcnt].hasOwnProperty('x3')){
str += hsmp.segments[pcnt].x2 * options.scale +' '+ hsmp.segments[pcnt].y2 * options.scale +' ';
}
str += hsmp.segments[pcnt].x1 * options.scale +' '+ hsmp.segments[pcnt].y1 * options.scale +' ';
}
}else{
if(hsmp.segments[ hsmp.segments.length-1 ].hasOwnProperty('x3')){
str += 'M '+ _this.roundtodec( hsmp.segments[ hsmp.segments.length-1 ].x3 * options.scale ) +' '+ _this.roundtodec( hsmp.segments[ hsmp.segments.length-1 ].y3 * options.scale ) +' ';
}else{
str += 'M '+ _this.roundtodec( hsmp.segments[ hsmp.segments.length-1 ].x2 * options.scale ) +' '+ _this.roundtodec( hsmp.segments[ hsmp.segments.length-1 ].y2 * options.scale ) +' ';
}
for(pcnt = hsmp.segments.length-1; pcnt >= 0; pcnt--){
str += hsmp.segments[pcnt].type +' ';
if(hsmp.segments[pcnt].hasOwnProperty('x3')){
str += _this.roundtodec( hsmp.segments[pcnt].x2 * options.scale ) +' '+ _this.roundtodec( hsmp.segments[pcnt].y2 * options.scale ) +' ';
}
str += _this.roundtodec( hsmp.segments[pcnt].x1 * options.scale ) +' '+ _this.roundtodec( hsmp.segments[pcnt].y1 * options.scale ) +' ';
}
}// End of creating hole path string
str += 'Z '; // Close path
}// End of holepath check
// Closing path element
str += '" />';
// Rendering control points
if(options.lcpr || options.qcpr){
for(pcnt=0; pcnt<smp.segments.length; pcnt++){
if( smp.segments[pcnt].hasOwnProperty('x3') && options.qcpr ){
str += '<circle cx="'+ smp.segments[pcnt].x2 * options.scale +'" cy="'+ smp.segments[pcnt].y2 * options.scale +'" r="'+ options.qcpr +'" fill="cyan" stroke-width="'+ options.qcpr * 0.2 +'" stroke="black" />';
str += '<circle cx="'+ smp.segments[pcnt].x3 * options.scale +'" cy="'+ smp.segments[pcnt].y3 * options.scale +'" r="'+ options.qcpr +'" fill="white" stroke-width="'+ options.qcpr * 0.2 +'" stroke="black" />';
str += '<line x1="'+ smp.segments[pcnt].x1 * options.scale +'" y1="'+ smp.segments[pcnt].y1 * options.scale +'" x2="'+ smp.segments[pcnt].x2 * options.scale +'" y2="'+ smp.segments[pcnt].y2 * options.scale +'" stroke-width="'+ options.qcpr * 0.2 +'" stroke="cyan" />';
str += '<line x1="'+ smp.segments[pcnt].x2 * options.scale +'" y1="'+ smp.segments[pcnt].y2 * options.scale +'" x2="'+ smp.segments[pcnt].x3 * options.scale +'" y2="'+ smp.segments[pcnt].y3 * options.scale +'" stroke-width="'+ options.qcpr * 0.2 +'" stroke="cyan" />';
}
if( (!smp.segments[pcnt].hasOwnProperty('x3')) && options.lcpr){
str += '<circle cx="'+ smp.segments[pcnt].x2 * options.scale +'" cy="'+ smp.segments[pcnt].y2 * options.scale +'" r="'+ options.lcpr +'" fill="white" stroke-width="'+ options.lcpr * 0.2 +'" stroke="black" />';
}
}
// Hole children control points
for( var hcnt=0; hcnt < smp.holechildren.length; hcnt++){
var hsmp = layer[ smp.holechildren[hcnt] ];
for(pcnt=0; pcnt<hsmp.segments.length; pcnt++){
if( hsmp.segments[pcnt].hasOwnProperty('x3') && options.qcpr ){
str += '<circle cx="'+ hsmp.segments[pcnt].x2 * options.scale +'" cy="'+ hsmp.segments[pcnt].y2 * options.scale +'" r="'+ options.qcpr +'" fill="cyan" stroke-width="'+ options.qcpr * 0.2 +'" stroke="black" />';
str += '<circle cx="'+ hsmp.segments[pcnt].x3 * options.scale +'" cy="'+ hsmp.segments[pcnt].y3 * options.scale +'" r="'+ options.qcpr +'" fill="white" stroke-width="'+ options.qcpr * 0.2 +'" stroke="black" />';
str += '<line x1="'+ hsmp.segments[pcnt].x1 * options.scale +'" y1="'+ hsmp.segments[pcnt].y1 * options.scale +'" x2="'+ hsmp.segments[pcnt].x2 * options.scale +'" y2="'+ hsmp.segments[pcnt].y2 * options.scale +'" stroke-width="'+ options.qcpr * 0.2 +'" stroke="cyan" />';
str += '<line x1="'+ hsmp.segments[pcnt].x2 * options.scale +'" y1="'+ hsmp.segments[pcnt].y2 * options.scale +'" x2="'+ hsmp.segments[pcnt].x3 * options.scale +'" y2="'+ hsmp.segments[pcnt].y3 * options.scale +'" stroke-width="'+ options.qcpr * 0.2 +'" stroke="cyan" />';
}
if( (!hsmp.segments[pcnt].hasOwnProperty('x3')) && options.lcpr){
str += '<circle cx="'+ hsmp.segments[pcnt].x2 * options.scale +'" cy="'+ hsmp.segments[pcnt].y2 * options.scale +'" r="'+ options.lcpr +'" fill="white" stroke-width="'+ options.lcpr * 0.2 +'" stroke="black" />';
}
}
}
}// End of Rendering control points
return str;
},// End of svgpathstring()
// Converting tracedata to an SVG string
this.getsvgstring = function( tracedata, options ){
options = _this.checkoptions(options);
var w = tracedata.width * options.scale, h = tracedata.height * options.scale;
// SVG start
var svgstr = '<svg ' + (options.viewbox ? ('viewBox="0 0 '+w+' '+h+'" ') : ('width="'+w+'" height="'+h+'" ')) +
'version="1.1" xmlns="http://www.w3.org/2000/svg" desc="Created with imagetracer.js version '+_this.versionnumber+'" >';
// Drawing: Layers and Paths loops
for(var lcnt=0; lcnt < tracedata.layers.length; lcnt++){
for(var pcnt=0; pcnt < tracedata.layers[lcnt].length; pcnt++){
// Adding SVG <path> string
if( !tracedata.layers[lcnt][pcnt].isholepath ){
svgstr += _this.svgpathstring( tracedata, lcnt, pcnt, options );
}
}// End of paths loop
}// End of layers loop